Articles | Volume 5, issue 1
https://doi.org/10.5194/pb-5-7-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/pb-5-7-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spontaneous meningioma in a pig-tailed macaque (Macaca nemestrina)
Roland Plesker
CORRESPONDING AUTHOR
Paul-Ehrlich-Institut, Langen, 63225, Germany
Martina Bleyer
Pathology Unit, German Primate Center, Göttingen, 37077, Germany
Kerstin Mätz-Rensing
Pathology Unit, German Primate Center, Göttingen, 37077, Germany
Related authors
Roland Plesker and Kernt Köhler
Primate Biol., 10, 1–6, https://doi.org/10.5194/pb-10-1-2023, https://doi.org/10.5194/pb-10-1-2023, 2023
Short summary
Short summary
To our knowledge, this report represents the first description of thyroid gland tumors in an African Green Monkey (Chlorocebus aethiops). Two cystadenomas as well as a solid follicular adenoma are described in a 27-year-old female. No indications of excessive hormone production due to the tumors were detected.
Roland Plesker and Gudrun Hintereder
Primate Biol., 8, 37–42, https://doi.org/10.5194/pb-8-37-2021, https://doi.org/10.5194/pb-8-37-2021, 2021
Short summary
Short summary
To our knowledge, this study is the first report of spontaneous Hashimoto-like chronic lymphocytic thyroiditis in a rhesus macaque (Macaca mulatta). Despite the microscopic similarities to human cases, autoantibodies (thyroglobulin antibodies, thyriod peroxidase antibodies, and thyroid-stimulating hormone receptor antibodies) were not identified in this rhesus macaque using a human electrochemiluminescence immunoassay system.
Roland Plesker and Jürgen Berger
Primate Biol., 7, 13–17, https://doi.org/10.5194/pb-7-13-2020, https://doi.org/10.5194/pb-7-13-2020, 2020
Short summary
Short summary
This report describes a case of unintended importation of tropical baby jumping spiders to a laboratory monkey colony. The spiders were detected in a cocoon attached to a banana for monkey consumption. In identifying the family of spiders as jumping spiders (Salticidae), it turned out that these spiders would not have been venomous to humans and they most likely would not have had the potential to establish a new spider colony in the facility.
Roland Plesker, Kernt Köhler, Susanne von Gerlach, Klaus Boller, Markus Vogt, and Inke S. Feder
Primate Biol., 7, 5–12, https://doi.org/10.5194/pb-7-5-2020, https://doi.org/10.5194/pb-7-5-2020, 2020
Short summary
Short summary
This report describes a reactive mesothelial hyperplasia as a reaction to a polyserositis in an African green monkey (Chlorocebus aethiops) mimicking an epitheloid mesothelioma. Histopathology, immunohistochemistry, fluorescence in situ hybridization, and electron microscopy were used to determine the benign nature of the mesothelial proliferation. For the first time, human genetic probes had been successfully applied to an African green monkey.
Dina Kleinlützum and Roland Plesker
Primate Biol., 4, 33–37, https://doi.org/10.5194/pb-4-33-2017, https://doi.org/10.5194/pb-4-33-2017, 2017
Roland Plesker and Kernt Köhler
Primate Biol., 10, 1–6, https://doi.org/10.5194/pb-10-1-2023, https://doi.org/10.5194/pb-10-1-2023, 2023
Short summary
Short summary
To our knowledge, this report represents the first description of thyroid gland tumors in an African Green Monkey (Chlorocebus aethiops). Two cystadenomas as well as a solid follicular adenoma are described in a 27-year-old female. No indications of excessive hormone production due to the tumors were detected.
Roland Plesker and Gudrun Hintereder
Primate Biol., 8, 37–42, https://doi.org/10.5194/pb-8-37-2021, https://doi.org/10.5194/pb-8-37-2021, 2021
Short summary
Short summary
To our knowledge, this study is the first report of spontaneous Hashimoto-like chronic lymphocytic thyroiditis in a rhesus macaque (Macaca mulatta). Despite the microscopic similarities to human cases, autoantibodies (thyroglobulin antibodies, thyriod peroxidase antibodies, and thyroid-stimulating hormone receptor antibodies) were not identified in this rhesus macaque using a human electrochemiluminescence immunoassay system.
Roland Plesker and Jürgen Berger
Primate Biol., 7, 13–17, https://doi.org/10.5194/pb-7-13-2020, https://doi.org/10.5194/pb-7-13-2020, 2020
Short summary
Short summary
This report describes a case of unintended importation of tropical baby jumping spiders to a laboratory monkey colony. The spiders were detected in a cocoon attached to a banana for monkey consumption. In identifying the family of spiders as jumping spiders (Salticidae), it turned out that these spiders would not have been venomous to humans and they most likely would not have had the potential to establish a new spider colony in the facility.
Roland Plesker, Kernt Köhler, Susanne von Gerlach, Klaus Boller, Markus Vogt, and Inke S. Feder
Primate Biol., 7, 5–12, https://doi.org/10.5194/pb-7-5-2020, https://doi.org/10.5194/pb-7-5-2020, 2020
Short summary
Short summary
This report describes a reactive mesothelial hyperplasia as a reaction to a polyserositis in an African green monkey (Chlorocebus aethiops) mimicking an epitheloid mesothelioma. Histopathology, immunohistochemistry, fluorescence in situ hybridization, and electron microscopy were used to determine the benign nature of the mesothelial proliferation. For the first time, human genetic probes had been successfully applied to an African green monkey.
Kerstin Mätz-Rensing and Martina Bleyer
Primate Biol., 4, 229–230, https://doi.org/10.5194/pb-4-229-2017, https://doi.org/10.5194/pb-4-229-2017, 2017
Kerstin Mätz-Rensing, Constanze Yue, Jeanette Klenner, Heinz Ellerbrok, and Christiane Stahl-Hennig
Primate Biol., 4, 163–171, https://doi.org/10.5194/pb-4-163-2017, https://doi.org/10.5194/pb-4-163-2017, 2017
Short summary
Short summary
The research into therapeutic agents for prevention and treatment of orthopoxvirus (OPXV) infections requires adequate animal models to investigate the efficacy and safety of new vaccines and antiviral compounds against smallpox and other highly pathogenic OPXVs. This study was undertaken to investigate the susceptibility of rhesus monkeys towards the calpox virus, an orthopoxvirus of the species Cowpox virus, which is uniformly lethal in common marmosets, in order to define a new animal model.
Matthias Mietsch, Ulrike Sauermann, Kerstin Mätz-Rensing, Antonina Klippert, Maria Daskalaki, Nicole Stolte-Leeb, and Christiane Stahl-Hennig
Primate Biol., 4, 107–115, https://doi.org/10.5194/pb-4-107-2017, https://doi.org/10.5194/pb-4-107-2017, 2017
Eva Gruber-Dujardin, Martina Bleyer, and Kerstin Mätz-Rensing
Primate Biol., 4, 77–91, https://doi.org/10.5194/pb-4-77-2017, https://doi.org/10.5194/pb-4-77-2017, 2017
Nicole Cichon, Karen Lampe, Felix Bremmer, Tamara Becker, and Kerstin Mätz-Rensing
Primate Biol., 4, 71–75, https://doi.org/10.5194/pb-4-71-2017, https://doi.org/10.5194/pb-4-71-2017, 2017
Short summary
Short summary
We herein report a unique case of granulomatous arteritis in a grey mouse lemur affecting multiple organs, which is not comparable to other disease entities formerly described in nonhuman primates. The features of the entity most closely resemble disseminated visceral giant cell arteritis in humans. A concise description of the disease is given, and the differential diagnoses are discussed. An idiopathic pathogenesis is suspected.
Dina Kleinlützum and Roland Plesker
Primate Biol., 4, 33–37, https://doi.org/10.5194/pb-4-33-2017, https://doi.org/10.5194/pb-4-33-2017, 2017
Karen Lampe, Jens-Christian Rudnick, Fabian Leendertz, Martina Bleyer, and Kerstin Mätz-Rensing
Primate Biol., 4, 39–46, https://doi.org/10.5194/pb-4-39-2017, https://doi.org/10.5194/pb-4-39-2017, 2017
Tamara Becker, Florian Pieper, David Liebetanz, Martina Bleyer, Annette Schrod, Kerstin Maetz-Rensing, and Stefan Treue
Primate Biol., 4, 27–32, https://doi.org/10.5194/pb-4-27-2017, https://doi.org/10.5194/pb-4-27-2017, 2017
Martina Bleyer, Marius Kunze, Eva Gruber-Dujardin, and Kerstin Mätz-Rensing
Primate Biol., 4, 17–25, https://doi.org/10.5194/pb-4-17-2017, https://doi.org/10.5194/pb-4-17-2017, 2017
Antonina Klippert, Martina Bleyer, Ulrike Sauermann, Berit Neumann, Artur Kaul, Maria Daskalaki, Nicole Stolte-Leeb, Frank Kirchhoff, and Christiane Stahl-Hennig
Primate Biol., 3, 65–75, https://doi.org/10.5194/pb-3-65-2016, https://doi.org/10.5194/pb-3-65-2016, 2016
Short summary
Short summary
Despite effective antiviral therapy, HIV infection frequently leads to blood cell tumors known as lymphoma in the final disease stage. We have observed the same tumors in monkeys infected with simian immunodeficiency virus. Tumor development coincided with and was fostered by co-infection with the tumorigenic simian homolog to human Epstein–Barr virus. Two cases of lymphoma are presented, one exhibiting an unusual cell surface marker composition and the other obstructing the urogenital tract.
N. Siskos, K. Lampe, F.-J. Kaup, and K. Mätz-Rensing
Primate Biol., 2, 9–12, https://doi.org/10.5194/pb-2-9-2015, https://doi.org/10.5194/pb-2-9-2015, 2015
Short summary
Short summary
In this paper, a co-infection with Toxoplasma gondii and Capillaria hepatica in a ring-tailed lemur is described. As a protozoan parasite, T. gondii can affect nearly all warm-blooded species, causing toxoplasmosis. In lemurs, toxoplasmosis has severe clinical manifestations leading to death. C. hepatica also affects a broad range of mammals, causing hepatic capillariasis. Although it is not known to be lethal, its potential predisposition to toxoplasmosis in our case is of great interest.
Related subject area
Pathology
Multiple adenomas of the thyroid gland in an African green monkey (Chlorocebus aethiops)
Spontaneous (Hashimoto-like) chronic lymphocytic thyroiditis in a rhesus macaque (Macaca mulatta)
Reactive mesothelial hyperplasia mimicking mesothelioma in an African green monkey (Chlorocebus aethiops)
A review on ocular findings in mouse lemurs: potential links to age and genetic background
Spontaneous endometriosis in rhesus macaques: evidence for a genetic association with specific Mamu-A1 alleles
Morphological and immunohistochemical characterization of spontaneous endometriosis in rhesus macaques (Macaca mulatta)
Unique case of granulomatous arteritis in a grey mouse lemur (Microcebus murinus) – first case description
A case of gallstones in an African green monkey (Chlorocebus aethiops)
Intravascular T-cell lymphoma in a patas monkey (Erythrocebus patas)
Spontaneous lung pathology in a captive common marmoset colony (Callithrix jacchus)
The Department of Pathology at the German Primate Center from 1973 to 1999
From the working group "Experimental Pathology" to the department "Pathology Unit" – historical development in retrospect
Unique case of disseminated toxoplasmosis and concurrent hepatic capillariasis in a ring-tailed lemur: first case description
Roland Plesker and Kernt Köhler
Primate Biol., 10, 1–6, https://doi.org/10.5194/pb-10-1-2023, https://doi.org/10.5194/pb-10-1-2023, 2023
Short summary
Short summary
To our knowledge, this report represents the first description of thyroid gland tumors in an African Green Monkey (Chlorocebus aethiops). Two cystadenomas as well as a solid follicular adenoma are described in a 27-year-old female. No indications of excessive hormone production due to the tumors were detected.
Roland Plesker and Gudrun Hintereder
Primate Biol., 8, 37–42, https://doi.org/10.5194/pb-8-37-2021, https://doi.org/10.5194/pb-8-37-2021, 2021
Short summary
Short summary
To our knowledge, this study is the first report of spontaneous Hashimoto-like chronic lymphocytic thyroiditis in a rhesus macaque (Macaca mulatta). Despite the microscopic similarities to human cases, autoantibodies (thyroglobulin antibodies, thyriod peroxidase antibodies, and thyroid-stimulating hormone receptor antibodies) were not identified in this rhesus macaque using a human electrochemiluminescence immunoassay system.
Roland Plesker, Kernt Köhler, Susanne von Gerlach, Klaus Boller, Markus Vogt, and Inke S. Feder
Primate Biol., 7, 5–12, https://doi.org/10.5194/pb-7-5-2020, https://doi.org/10.5194/pb-7-5-2020, 2020
Short summary
Short summary
This report describes a reactive mesothelial hyperplasia as a reaction to a polyserositis in an African green monkey (Chlorocebus aethiops) mimicking an epitheloid mesothelioma. Histopathology, immunohistochemistry, fluorescence in situ hybridization, and electron microscopy were used to determine the benign nature of the mesothelial proliferation. For the first time, human genetic probes had been successfully applied to an African green monkey.
Marko Dubicanac, Ute Radespiel, and Elke Zimmermann
Primate Biol., 4, 215–228, https://doi.org/10.5194/pb-4-215-2017, https://doi.org/10.5194/pb-4-215-2017, 2017
Short summary
Short summary
This review shows that mouse lemurs show various ocular impairments which may distort vision. The most widespread and obvious ocular finding were nuclear sclerosis and cataracts. Both highly increase with increasing age. Iris posterior synechia has been described in different colonies and seems highly age dependent and cataract associated. Combined with the variety of many other eye diseases, special ophthalmological treatments and examinations are required to ensure animal well-being.
Ivanela Kondova, Gerco Braskamp, Peter J. Heidt, Wim Collignon, Tom Haaksma, Nanine de Groot, Nel Otting, Gaby Doxiadis, Susan V. Westmoreland, Eric J. Vallender, and Ronald E. Bontrop
Primate Biol., 4, 117–125, https://doi.org/10.5194/pb-4-117-2017, https://doi.org/10.5194/pb-4-117-2017, 2017
Eva Gruber-Dujardin, Martina Bleyer, and Kerstin Mätz-Rensing
Primate Biol., 4, 77–91, https://doi.org/10.5194/pb-4-77-2017, https://doi.org/10.5194/pb-4-77-2017, 2017
Nicole Cichon, Karen Lampe, Felix Bremmer, Tamara Becker, and Kerstin Mätz-Rensing
Primate Biol., 4, 71–75, https://doi.org/10.5194/pb-4-71-2017, https://doi.org/10.5194/pb-4-71-2017, 2017
Short summary
Short summary
We herein report a unique case of granulomatous arteritis in a grey mouse lemur affecting multiple organs, which is not comparable to other disease entities formerly described in nonhuman primates. The features of the entity most closely resemble disseminated visceral giant cell arteritis in humans. A concise description of the disease is given, and the differential diagnoses are discussed. An idiopathic pathogenesis is suspected.
Dina Kleinlützum and Roland Plesker
Primate Biol., 4, 33–37, https://doi.org/10.5194/pb-4-33-2017, https://doi.org/10.5194/pb-4-33-2017, 2017
Karen Lampe, Jens-Christian Rudnick, Fabian Leendertz, Martina Bleyer, and Kerstin Mätz-Rensing
Primate Biol., 4, 39–46, https://doi.org/10.5194/pb-4-39-2017, https://doi.org/10.5194/pb-4-39-2017, 2017
Martina Bleyer, Marius Kunze, Eva Gruber-Dujardin, and Kerstin Mätz-Rensing
Primate Biol., 4, 17–25, https://doi.org/10.5194/pb-4-17-2017, https://doi.org/10.5194/pb-4-17-2017, 2017
M. Brack
Primate Biol., 2, 81–87, https://doi.org/10.5194/pb-2-81-2015, https://doi.org/10.5194/pb-2-81-2015, 2015
F.-J. Kaup
Primate Biol., 2, 57–63, https://doi.org/10.5194/pb-2-57-2015, https://doi.org/10.5194/pb-2-57-2015, 2015
N. Siskos, K. Lampe, F.-J. Kaup, and K. Mätz-Rensing
Primate Biol., 2, 9–12, https://doi.org/10.5194/pb-2-9-2015, https://doi.org/10.5194/pb-2-9-2015, 2015
Short summary
Short summary
In this paper, a co-infection with Toxoplasma gondii and Capillaria hepatica in a ring-tailed lemur is described. As a protozoan parasite, T. gondii can affect nearly all warm-blooded species, causing toxoplasmosis. In lemurs, toxoplasmosis has severe clinical manifestations leading to death. C. hepatica also affects a broad range of mammals, causing hepatic capillariasis. Although it is not known to be lethal, its potential predisposition to toxoplasmosis in our case is of great interest.
Cited articles
Cantile, C. and Youssef, S.: Nervous System, in: Jubb, Kennedy and Palmer's
Pathology of Domestic Animals, 6. Edition, edited by: Maxie, M. G., Elsevier, St. Louis,
USA, 251–406, 2016.
Dahme, E.: Meningiome bei Fleischfressern, Berliner und Münchener
Tierärztliche Wochenschrift, 70, 32–34, 1957.
Devaprasath, A. and Chack, G.: Diagnostic validity of the Ki-67 labelling
index using the MIB-1 monoclonal antibody in the grading of meningioma,
Neurol. India, 51, 336–340, 2003.
Dolecek, T. A., Dressler, E. V. M., Thakkar, J. P., Liu, M., Al-Qaisi, A.,
and Villano, J. L.: Epidemiology of Meningiomas Post Public Law 107-206 –
The Benign Brain Tumor Cancer Registries Act, Cancer, 121, 2400–2410,
https://doi.org/10.1002/cncr.29379, 2015.
Enam, S. A., Abdulrauf, S., Metha, G. M., and Mahmood, A.: Metastasis in
meningioma, Acta Neuropathol., 138, 1172–1178, 2005.
Fankhauser, R., Luginbühl, H., and McGrath, J. T.: Tumours of the nervous
system, Bull World Health Organ., 50, 53–69, 1974.
Fonkem, E., Dandashi, J. A., Stroberg, E., Garrett Jr., D., Harris, F. S., El
Nihum, I. M., Cooper, J., Dayawansa, S., and Huang, J. H.: A retrospective
analysis of meningioma in Central Texas, J. Epidemiol. Glob. Health, 6,
87–93, https://doi.org/10.1016/j.jegh.2016.01.001, 2016.
Goldstein, R. A. and Harsh, G. R.: IV. Meningiomas: Natural history,
diagnosis, and imaging, in: Cancer of the Nervous System, Black, P. M. and
Loeffler, J. S., Lippincott Williams & Wilkins, Philadelphia, USA,
279–313, 2005.
Gruber-Dujardin, E., Bleyer, M., and Mätz-Rensing, K.: Morphological and
immunohistochemical characterization of spontaneous endometriosis in rhesus macaques
(Macaca mulatta), Primate Biol., 4, 77–91, https://doi.org/10.5194/pb-4-77-2017, 2017.
Harter, P. N., Braun, Y., and Plate, K. H.: Classification of meningiomas –
advances and controversies, Chinese Clinical Oncology, 6, Suppl 1, S2,
https://doi.org/10.21037/cco.2017.05.02, 2017.
Hsu, D. W., Pardo, F. S., Efird, J. T., Linggood, R. M., and Hedley-Whyte, E. T.:
Prognostic Significance of Proliferative Indices in Meningiomas, J. Neuropath. Exp. Neur.,
53, 247–255, 1994.
Jungherr, E.: Tumors and tumor-like conditions in monkeys, Ann. NY. Acad.
Sci., 108, 777–792, 1963.
Kalamarides, M. and Goutagny, S.: Meningiomas, Rev. Prat., 31, 1792–1798,
https://doi.org/10.1038/onc.2010.609, 2006.
Kalamarides, M., Stemmer-Rachamimov, A. O., Niwa-Kawakita, M., Chareyre, F.,
Taranchon, E., Han, Z. Y., Martinelli, C., Lusis, E. A., Hegedus, B., Gutmann,
D. H., and Giovannini, M.: Identification of a progenitor cell of origin
capable of generating diverse meningioma histological subtypes, Oncogene,
30, 2333–2344, 2011.
Kepes, J. J.: Presidential Address: The Histopathology of Meningiomas. A
Refection of Origins and Expected Behavior?, J. Neuropath. Exp. Neur., 45,
95–107, 1986.
Koestner, A. and Higgins, R. J.: Tumors of the nervous system, in: Tumors in
Domestic Animals, edited by: Meuten, D. J., Iowa State Press, Ames, USA, 697–738, 2002.
Koestner, A., Bilzer, T., Fatzer, R., Schulman, F. Y., Summers, B. A., and van
Winkle, T. J. (Eds.): World Health Organisation International Classification
of Tumors of the Nervous System of Domestic Animals, Second Series, Volume
V, Armed Forces Institute of Pathology and American Registry of Pathology,
Washington D.C., USA, 1999.
Li, P., Wang, Z., Zhou, Q., Li, S., Zhang, J., Wang, Y., Wang, X., Wang, B.,
Zhao, F., Liu, P., and Yang, Z.: A Retrospective Analysis of Vision-Impairing
Tumors Among 467 Patients with Neurofibromatosis Type 2, World Neurosurg.,
97, 557–564, https://doi.org/10.1016/j.wneu.2016.10.080, 2017.
Louis, D. N., Scheithauer, B. W., Budka, H., von Deimling, A., and Kepes, J. J.:
Meningiomas, in: Pathology and genetics of tumours of the nervous system:
World Health Organisation classification of tumours, edited by: Kleihues, P. and
Cavenee, W. K., IARC Press, Lyon, France, 176–184, 2000.
Louis, D. N., Ohgaki, H., Wiestler, O. D., and Cavenee, W. K.: WHO
Classification of Tumours of the Central Nervous System. Revised 4th
edition, International Agency for Research on Cancer, Lyon, France, Chapter
10, Meningiomas, 231–245, 2016.
Longstreth Jr., W. T., Dennis, L. K., McGuire, V. M., Drangshold, M. T., and
Koepsell, T. D.: Epidemiology of Intracranial Meningioma, Cancer, 72,
639–648, 1993.
Lowenstine, L. J.: Neoplasms and proliferative disorders in non-human
primates, in: Primates: The Road to self-sustaining populations, Benischke,
K., Springer Verlag, New York, USA, 781–814, 1986.
Maes, L., Lippens, E., Kalala, J. P., and de Ridder, L.: The hTERT-protein
and Ki-67 labelling index in recurrent and non-recurrent meningiomas, Cell
Proliferat., 38, 3–12, https://doi.org/10.1111/j.1365-2184.2005.00325.x, 2005.
Mandara, M. T., Ricci, G., Rinaldi, L., Sarli, G., and Vitellozzi, G.:
Immunhistocheimical identification and image analysis quantification of
oestrogen and progesterone receptors in canine and feline meningioma,
J. Comp. Pathol., 127, 214–218, 2002.
Mandara, M. T., Pavone, S., Brunetti, B., and Mandrioli, L.: A comparative
study of canine and feline meningioma classification based on the WHO
histological classification system in humans, in: Proceedings of the 22nd
Symposium ESVN-ECVN, Bologna, Italy, 24–26 September 2009, J. Vet. Intern.
Med., 24, p. 238, 2010.
McClure, H. M.: Neoplastic diseases in nonhuman primates: Literature review
and observations in an autopsy series of 2,176 animals, in: The Comparative
Pathology of Zoo Animals, edited by: Montali, R. J. and Migaki, G., Smithsonian
Institution Press, Washington D.C., USA, 549–565, 1980.
McConnell, E. E., Basson, P. A., DeVos, V., Myers, B. J., and Kunz, R. E.: A
survey of diseases among 100 free-ranging chacma baboons (Papio ursinus)
from the Kruger National Park, Onderstepoort J. Vet. Res., 41, 97–168, 1974.
Mitsumori, K., Maronpot, R. R., and Boorman, G. A.: Spontaneous Tumors of the
Meninges in Rats, Vet. Pathol., 24, 50–58, https://doi.org/10.1177/030098588702400109,
1987.
Motta, L., Mandara, M. T., and Skerritt, G. C.: Canine and feline
intracranial meningiomas: An updated review, Vet. J., 192, 153–165,
https://doi.org/10.1016/j.tvjl.2011.10.008, 1987.
Mulisch, M. and Welsch, U. (Eds.): Romeis-Mikroskopische Technik, 19.
Auflage, Springer Sektrum, Heidelberg, Germany, 2015.
Nagashima, G., Fujimoto, T., Suzuki, R., Asai, J., Itokawa, H., and Noda, M.:
Dural invasion of meningioma: a histological and immunohistochemical study,
Brain Tumor Pathol., 23, 13–17, https://doi.org/10.1007/s10014-006-0193-x, 2006.
Oliveira, F. N., Porter, B. F., Dick Jr., E. J., and Hubbard, G. B.:
Intracranial meningioma in a baboon (Papio spp.), J. Comp. Pathol., 145,
414–418, https://doi.org/10.1016/j.jcpa.2011.03.006, 2011.
Patnaik, A. K., Kay, W. J., and Hurvitz, A. I.: Intracranial meningioma: A
comparative pathologic study of 28 dogs, Vet. Pathol., 23, 369–373,
https://doi.org/10.1177/030098588602300404, 1986.
Pérez, V., Vidal, E., González, N., Benavides, J., Ferreras, M. C.,
Villagrasa, M., and Pumarola, M.: Orbital meningioma with a granular cell
component in a dog with extracranial metastasis, J. Comp. Pathol., 133,
212–217, https://doi.org/10.1016/j.jcpa.2005.02.003, 2005.
Pérez-Guiones Bacete, M., Cerda-Nicolás, M., Piquer, J., and
Barcia-Mariño, C.: Meningiomas: immunohistochemical analysis of 26
cases, Arch. Neurobiol. (Madr), 55, 43–49, 1992.
Perry, A.: Meningiomas, in: Russell & Rubinstein's Pathology of Tumors of
the Nervous System, 7, edited by: McLendon, R. E., Rosenblum, M. K., and Bigner, D. D.,
Hodder Arnold, London, UK, 427–475, 2006.
Perry, A., Scheithauer, B. W., Stafford, S. L., Lohse, C. M., and Wollan, P. C.:
“Malignancy” in meningiomas: A clinicopathologic study of 116 patients,
with grading implications, Cancer, 85, 2046–2056, 1999.
Remick, A. K., Van Wettere, A. J., and Williams, C. V.: Neoplasia in
Prosimians: Case Series from a Captive Prosimian Population and Literature
Review, Vet. Pathol., 46, 746–772, https://doi.org/10.1354/vp.08-VP-0154-R-FL, 2009.
Schnitt, S. J. and Vogel, H.: Meningiomas. Diagnostic value of
immunoperoxidase staining for epithelial membrane antigen, Am. J. Surg.
Pathol., 10, 640–649, 1986.
Schwechheimer, K., Kartenbeck, J., Moll, R., and Franke, W. W.: Vimentin
filament-desmosome cytoskeleton of diverse types of human meningiomas. A
distinctive diagnostic feature, Lab. Invest., 51, 584–591, 1984.
Scott, G. B. D. (Ed.): Comparative Primate Pathology, Blackwell Science,
Oxford, UK, 1992.
Snyder, J. M., Shofer, F. S., Van Winkle, T. J., and Massicot, C.: Canine
intracranial primary neoplasia: 173 cases (1986–2003), J. Vet. Intern. Med.,
20, 669–675, 2006.
Spille, D. C., Heß, K., Sauerland, C., Sanai, N., Stummer, W., Paulus,
W., and Brokinkel, B.: Brain Invasion in Meningiomas: Incidence and
Correlations with Clinical Variables and Prognosis, World Neurosurg., 93,
346–354, https://doi.org/10.1016/j.wneu.2016.06.055, 2016.
Sturges, B. K., Dickinson, P. J., Bollen, A. W., Koblik, P. D., Kass, P. H.,
Kortz, G. D., Vernau, K. M., Knipe, M. F., LeCouteur, R. A., and Higgins, R.
J.: Magnetic Resonance Imaging and Histological Classification of
Intracranial Meningiomas in 112 Dogs, J. Vet. Intern. Med., 22, 586–595,
https://doi.org/10.1111/j.1939-1676.2008.00042.x, 2008.
Summers, B. A., Cummings, J. F., and de Lahunta, A.: Tumours of the central
nervous system, in: Veterinary Neuropathology, Summers, B. A., Cummings, J.
F., and de Lahunta, A., Mosby-Yearbook Inc, St. Louis, USA, 351–401, 1995.
Tanaka, T. and Canfield, D. R.: Intracranial meningioma with ophthalmoplegia
in a rhesus macaque (Macaca mulatta), Comparative Med., 62, 439–442,
2012.
Troxel, M. T., Vite, C. H., Van Winkle, T. J., Newton, A. L., Tiches, D.,
Dayrell-Hart, B., Kapatkin, A. S., Shofer, F. S., and Steinberg, S. A.: Feline
intracranial neoplasia: retrospective review of 160 cases (1985–2001), J.
Vet. Intern. Med., 17, 850–859, 2003.
Vogel, P. and Fritz, D.: Cardiomyopathy associated with angiomatous
pheochromocytoma in a rhesus macaque (Macaca mulatta), Vet. Pathol., 40,
468–473, https://doi.org/10.1354/vp.40-4-468, 2003.
Wanschitz, J., Schmidbauer, M., Maier, H., Rössler, K., Vorkapic, P., and
Budka, H.: Suprasellar meningioma with expression of glial fibrillary acidic
protein: a peculiar variant, Acta Neuropathol., 90, 539–544, 1995.
Whittle, I. R., Smith, C., Navoo, P., and Collie, D.: Meningiomas, The
Lancet, 363, 1535–1543, https://doi.org/10.1016/S0140-6736(04)16153-9, 2004.
Wiemels, J., Wrensch, M., and Claus, E. B.: Epidemiology and etiology of
meningioma, J. Neurooncol., 99, 307–314, https://doi.org/10.1007/s11060-010-0386-3,
2010.
Winek, R. R., Scheithauer, B. W., and Wick, M. R.: Meningioma, meningeal
hemangiopericytoma (angioblastic meningioma), peripheral hemangiopericytoma,
and acoustic schwannoma. A comparative immunohistochemical study, Am. J.
Surg. Pathol., 13, 251–261, 1989.
Winkelmann, J., Mätz-Rensing, K., Silinski, S., and Kaup, F. J.:
Psammomatous Meningioma in a Black-and-white ruffed Lemur (Varecia variegata
variegate), Verhber. Erkr. Zoo- und Wildtiere, 43, 342–345, 2007.
Zaki, F. A. and Hurvitz, A. I.: Spontaneous neoplasms of the central nervous
system of the cat, J. Small Animal Pract., 17, 773–782, 1976.
Short summary
We present a spontaneous tumor of the meninges (meningioma) in a female pig-tailed macaque (Macaca nemestrina) more than 24 years old. Clinically, the monkey displayed slow, weak, and insecure movements and poor vision. A tumorous mass was present at the floor of the cranial cavity. It compressed adjacent parts of the brain, infiltrated surrounding bones, and expanded into the throat. Microscopically, the tumor showed both meningothelial and microcystic parts.
We present a spontaneous tumor of the meninges (meningioma) in a female pig-tailed macaque...