Articles | Volume 4, issue 2
https://doi.org/10.5194/pb-4-185-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/pb-4-185-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Transplantation in the nonhuman primate MPTP model of Parkinson's disease: update and perspectives
Florence Wianny
CORRESPONDING AUTHOR
Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
Julien Vezoli
CORRESPONDING AUTHOR
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
Related subject area
Stem cell biology
Baboon induced pluripotent stem cell generation by piggyBac transposition of reprogramming factors
The ubiquitin ligase c-CBL is expressed in undifferentiated marmoset monkey pluripotent stem cells but is not a general stem cell marker
Male germline stem cells in non-human primates
Overcoming barriers to reprogramming and differentiation in nonhuman primate induced pluripotent stem cells
Ignacio Rodriguez-Polo, Michael Stauske, Alexander Becker, Iris Bartels, Ralf Dressel, and Rüdiger Behr
Primate Biol., 6, 75–86, https://doi.org/10.5194/pb-6-75-2019, https://doi.org/10.5194/pb-6-75-2019, 2019
Short summary
Short summary
Stem-cell-based regenerative therapies in patients, e.g., for a failing heart or Parkinson's disease, are within reach. However, studies in appropriate animal models are required to make the final step to the clinic. In this context, the baboon may represent a valuable animal model for specific purposes. Here, we generated five so-called induced pluripotent stem cell lines from the baboon, which may be useful for preclinical testing of the respective therapeutic approaches.
Ignacio Rodriguez-Polo, Maike Nielsen, Katharina Debowski, and Rüdiger Behr
Primate Biol., 4, 231–240, https://doi.org/10.5194/pb-4-231-2017, https://doi.org/10.5194/pb-4-231-2017, 2017
Short summary
Short summary
In some patients with blood cell cancer, the protein c-CBL was found to be mutated. c-CBL has also been shown to be expressed by human testicular stem cells, which produce the spermatozoa. Based on these finding, we asked whether c-CBL may be a protein generally involved in the functioning of stem cells. While we could not detect c-CBL in stem cells of the gut, strong expression was found in pluripotent stem cells (PSCs) of the marmoset monkey, suggesting a role of c-CBL in primate PSCs.
Swati Sharma, Joana M. D. Portela, Daniel Langenstroth-Röwer, Joachim Wistuba, Nina Neuhaus, and Stefan Schlatt
Primate Biol., 4, 173–184, https://doi.org/10.5194/pb-4-173-2017, https://doi.org/10.5194/pb-4-173-2017, 2017
Short summary
Short summary
This review provides an introduction to the in vivo and in vitro germline stem cell terminology and physiology in non-human male primates. Primordial germ cell specification, migration and expansion are compared among species, and the usefulness of pluripotency markers is discussed taking immunohistochemical and molecular evidence during postnatal developmental stages into consideration. The concept of germline plasticity is critically reviewed and might present a primate-specific feature.
Jacob J. Hemmi, Anuja Mishra, and Peter J. Hornsby
Primate Biol., 4, 153–162, https://doi.org/10.5194/pb-4-153-2017, https://doi.org/10.5194/pb-4-153-2017, 2017
Short summary
Short summary
In these studies induced pluripotent stem cells (iPS cells) were generated from donors across the life span of the common marmoset (Callithrix jacchus) and were subjected to a directed neural differentiation protocol. Additionally chimpanzee (Pan troglodytes) iPS cells were generated. Both aged marmoset iPS cells and chimpanzee iPS cells showed defects in their ability to differentiate. However, most of these defects were able to be overcome by a brief treatment with dimethyl sulfoxide.
Cited articles
Adler, C. H. and Thorpy, M. J.: Sleep issues in Parkinson's disease, Neurology, 64, 12 Suppl. 3, S12–20, 2015.
Agid, Y.: Parkinson's disease: pathophysiology, Lancet, 337, 1321–1324, 1991.
Almirall, H., Pigarev, I., de la Calzada, M. D., Pigareva, M., Herrero, M. T., and Sagales, T.: Nocturnal sleep structure and temperature slope in MPTP treated monkeys, J. Neural Transm., 106, 1125–1134, 1999.
Almirall, H., Bautista, V., Sanchez-Bahillo, A., and Trinidad-Herrero, M.: Ultradian and circadian body temperature and activity rhythms in chronic MPTP treated monkeys, Neurophysiol. Clin., 31, 161–170, 2001.
Annett, L. E., Dunnett, S. B., Martel, F. L., Rogers, D. C., Ridley, R. M., Baker, H. F., and Marsden, C. D.: A functional assessment of embryonic dopaminergic grafts in the marmoset, Prog. Brain Res., 82, 535–542, 1990.
Annett, L. E., Martel, F. L., Rogers, D. C., Ridley, R. M., Baker, H. F., and Dunnett, S. B.: Behavioral assessment of the effects of embryonic nigral grafts in marmosets with unilateral 6-OHDA lesions of the nigrostriatal pathway, Exp. Neurol., 125, 228–246, 1994.
Annett, L. E., Torres, E. M., Ridley, R. M., Baker, H. F., and Dunnett, S. B.: A comparison of the behavioural effects of embryonic nigral grafts in the caudate nucleus and in the putamen of marmosets with unilateral 6-OHDA lesions, Exp. Brain Res., 103, 355–371, 1995.
Annett, L. E., Torres, E. M., Clarke, D. J., Ishida, Y., Barker, R. A., Ridley, R. M., and Dunnett, S. B.: Survival of nigral grafts within the striatum of marmosets with 6-OHDA lesions depends critically on donor embryo age, Cell Transplant., 6, 557–569, 1997.
Ansari, A. M., Ahmed, A. K., Matsangos, A. E., Lay, F., Born, L. J., Marti, G., and Sun, Z.: Cellular GFP Toxicity and Immunogenicity: Potential Confounders in in Vivo Cell Tracking Experiments, Stem. Cell Rev., 12, 553–559, 2016.
Arenas, E., Denham, M., and Villaescusa, J. C.: How to make a midbrain dopaminergic neuron, Development, 142, 1918–1936, 2015.
Aron Badin, R., Vadori, M., Vanhove, B., Nerriere-Daguin, V., Naveilhan, P., Neveu, I., and Cozzi, E.: Cell Therapy for Parkinson's Disease: A Translational Approach to Assess the Role of Local and Systemic Immunosuppression, Am. J. Transplant., 16, 2016–2029, 2016.
Asakawa, T., Fang, H., Sugiyama, K., Nozaki, T., Hong, Z., Yang, Y., and Xia, Y.: Animal behavioral assessments in current research of Parkinson's disease, Neurosci. Biobehav. Rev., 65, 63–94, 2016.
Bankiewicz, K. S., Plunkett, R. J., Mefford, I., Kopin, I. J., and Oldfield, E. H.: Behavioral recovery from MPTP-induced parkinsonism in monkeys after intracerebral tissue implants is not related to CSF concentrations of dopamine metabolites, Prog. Brain Res., 82, 561–571, 1990.
Barcia, C., Bautista, V., Sanchez-Bahillo, A., Fernandez-Villalba, E., Navarro-Ruis, J. M., Barreiro, A. F., and Herrero, M. T.: Circadian determinations of cortisol, prolactin and melatonin in chronic methyl-phenyl-tetrahydropyridine-treated monkeys, Neuroendocrinology, 78, 118–128, 2003.
Ben-Hur, T., Idelson, M., Khaner, H., Pera, M., Reinhartz, E., Itzik, A., and Reubinoff, B. E.: Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats, Stem. Cells, 22, 1246–1255, 2004.
Bezard, E., Imbert, C., Deloire, X., Bioulac, B., and Gross, C. E.: A chronic MPTP model reproducing the slow evolution of Parkinson's disease: evolution of motor symptoms in the monkey, Brain Res., 766, 107–112, 1997.
Bjugstad, K. B., Redmond Jr., D. E., Teng, Y. D., Elsworth, J. D., Roth, R. H., Blanchard, B. C., and Sladek Jr., J. R.: Neural stem cells implanted into MPTP-treated monkeys increase the size of endogenous tyrosine hydroxylase-positive cells found in the striatum: a return to control measures, Cell Transplant., 14, 183–192, 2005.
Bjugstad, K. B., Teng, Y. D., Redmond Jr., D. E., Elsworth, J. D., Roth, R. H., Cornelius, S. K., and Sladek Jr., J. R.: Human neural stem cells migrate along the nigrostriatal pathway in a primate model of Parkinson's disease, Exp. Neurol., 211, 362–369, 2008.
Blesa, J., Pifl, C., Sanchez-Gonzalez, M. A., Juri, C., Garcia-Cabezas, M. A., Adanez, R., and Obeso, J. A.: The nigrostriatal system in the presymptomatic and symptomatic stages in the MPTP monkey model: A PET, histological and biochemical study, Neurobiol. Dis., 48, 79–91, 2012.
Bloch, J., Brunet, J. F., McEntire, C. R., and Redmond, D. E.: Primate adult brain cell autotransplantation produces behavioral and biological recovery in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonian St. Kitts monkeys, J. Comp. Neurol., 522, 2729–2740, 2014.
Braak, H., Bohl, J. R., Muller, C. M., Rub, U., de Vos, R. A., and Del Tredici, K.: Stanley Fahn Lecture 2005: The staging procedure for the inclusion body pathology associated with sporadic Parkinson's disease reconsidered, Mov. Disord., 21, 2042–2051, 2006.
Brederlau, A., Correia, A. S., Anisimov, S. V., Elmi, M., Paul, G., Roybon, L., and Li, J. Y.: Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease: effect of in vitro differentiation on graft survival and teratoma formation, Stem Cells, 24, 1433–1440, 2006.
Brown, R. G. and Marsden, C. D.: Cognitive function in Parkinson's disease: from description to theory, Trends Neurosci., 13, 21–29, 1990.
Bruguerolle, B. and Simon, N.: Biologic rhythms and Parkinson's disease: a chronopharmacologic approach to considering fluctuations in function, Clin. Neuropharmacol., 25, 194–201, 2002.
Brundin, P., Nilsson, O. G., Strecker, R. E., Lindvall, O., Astedt, B., and Bjorklund, A.: Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson's disease, Exp. Brain Res., 65, 235–240, 1986.
Brunet, J. F., Redmond Jr., D. E., and Bloch, J.: Primate adult brain cell autotransplantation, a pilot study in asymptomatic MPTP-treated monkeys, Cell Transplant., 18, 787–799, 2009.
Burns, R. S., Chiueh, C. C., Markey, S. P., Ebert, M. H., Jacobowitz, D. M., and Kopin, I. J.: A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, P. Natl. Acad. Sci. USA, 80, 4546–4550, 1983.
Caiazzo, M., Dell'Anno, M. T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., and Broccoli, V.: Direct generation of functional dopaminergic neurons from mouse and human fibroblasts, Nature, 476, 224–227, 2011.
Castelo-Branco, G., Wagner, J., Rodriguez, F. J., Kele, J., Sousa, K., Rawal, N., and Arenas, E.: Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a, P. Natl. Acad. Sci. USA, 100, 12747–12752, 2003.
Castelo-Branco, G., Rawal, N., and Arenas, E.: GSK-3beta inhibition/beta-catenin stabilization in ventral midbrain precursors increases differentiation into dopamine neurons, J. Cell Sci., 117, 5731–5737, 2004.
Cepeda, I. L., Flores, J., Cornfeldt, M. L., O'Kusky, J. R., and Doudet, D. J.: Human retinal pigment epithelial cell implants ameliorate motor deficits in two rat models of Parkinson disease, J. Neuropathol. Exp. Neurol., 66, 576–584, 2007.
Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., and Studer, L.: Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling, Nat. Biotechnol., 27, 275–280, 2009.
Chang, D. J., Oh, S. H., Lee, N., Choi, C., Jeon, I., Kim, H. S., and Song, J.: Contralaterally transplanted human embryonic stem cell-derived neural precursor cells (ENStem-A) migrate and improve brain functions in stroke-damaged rats, Exp. Mol. Med., 45, 1–8, 2013.
Chen, Y., Xiong, M., Dong, Y., Haberman, A., Cao, J., Liu, H., and Zhang, S. C.: Chemical Control of Grafted Human PSC-Derived Neurons in a Mouse Model of Parkinson's Disease, Cell Stem Cells, 18, 817–826, 2016.
Chia, L. G. and Liu, L. H.: Parkinson's disease in Taiwan: an analysis of 215 patients, Neuroepidemiology, 11, 113–120, 1992.
Cicchetti, F., Fodor, W., Deacon, T. W., van Horne, C., Rollins, S., Burton, W., and Isacson, O.: Immune parameters relevant to neural xenograft survival in the primate brain, Xenotransplantation, 10, 41–49, 2003.
Collier, T. J., Redmond Jr., D. E., Roth, R. H., Elsworth, J. D., Taylor, J. R., and Sladek Jr., J. R.: Metabolic energy capacity of dopaminergic grafts and the implanted striatum in parkinsonian nonhuman primates as visualized with cytochrome oxidase histochemistry, Cell Transplant., 6, 135–140, 1997.
Collier, T. J., Sortwell, C. E., Elsworth, J. D., Taylor, J. R., Roth, R. H., Sladek Jr., J. R., and Redmond Jr., D. E.: Embryonic ventral mesencephalic grafts to the substantia nigra of MPTP-treated monkeys: feasibility relevant to multiple-target grafting as a therapy for Parkinson's disease, J. Comp. Neurol., 442, 320–330, 2002.
Conti, L., Pollard, S. M., Gorba, T., Reitano, E., Toselli, M., Biella, G., and Smith, A.: Niche-independent symmetrical self-renewal of a mammalian tissue stem cell, PLoS Biol., 3, 1594–1606, 2005.
Cooper, O., Hargus, G., Deleidi, M., Blak, A., Osborn, T., Marlow, E., and Isacson, O.: Differentiation of human ES and Parkinson's disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid, Mol. Cell Neurosci., 45, 258–266, 2010.
Cord, B. J., Li, J., Works, M., McConnell, S. K., Palmer, T., and Hynes, M. A.: Characterization of axon guidance cue sensitivity of human embryonic stem cell-derived dopaminergic neurons, Mol. Cell Neurosci., 45, 324–334, 2010.
d'Anglemont de Tassigny, X., Pascual, A., and Lopez-Barneo, J.: GDNF-based therapies, GDNF-producing interneurons, and trophic support of the dopaminergic nigrostriatal pathway, Implications for Parkinson's disease, Front Neuroanat., 9, 1–5, 2015.
Daadi, M. M., Grueter, B. A., Malenka, R. C., Redmond Jr., D. E., and Steinberg, G. K.: Dopaminergic neurons from midbrain-specified human embryonic stem cell-derived neural stem cells engrafted in a monkey model of Parkinson's disease, PLoS ONE, 7, 19-9, 2012.
Decamp, E. and Schneider, J. S.: Attention and executive function deficits in chronic low-dose MPTP-treated non-human primates, Eur. J. Neurosci., 20, 1371–1378, 2004.
Dell'Anno, M. T., Caiazzo, M., Leo, D., Dvoretskova, E., Medrihan, L., Colasante, G., and Broccoli, V.: Remote control of induced dopaminergic neurons in parkinsonian rats, J. Clin. Invest., 124, 3215–3229, 2014.
DeMattei, M., Levi, A. C., and Fariello, R. G.: Neuromelanic pigment in substantia nigra neurons of rats and dogs, Neurosci. Lett., 72, 37–42, 1986.
Destee, A.: Therapeutic strategies for Parkinson's disease, Rev. Prat., 55, 723–732, 2005.
Detrait, E. R., Bowers, W. J., Halterman, M. W., Giuliano, R. E., Bennice, L., Federoff, H. J., and Richfield, E. K.: Reporter gene transfer induces apoptosis in primary cortical neurons, Mol. Ther., 5, 723–730, 2002.
Doi, D., Morizane, A., Kikuchi, T., Onoe, H., Hayashi, T., Kawasaki, T., and Takahashi, J.: Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson's disease, Stem Cells, 30, 935–945, 2012.
Doi, D., Samata, B., Katsukawa, M., Kikuchi, T., Morizane, A., Ono, Y., and Takahashi, J.: Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation, Stem Cell Rep., 2, 337–350, 2014.
Doudet, D. J., Cornfeldt, M. L., Honey, C. R., Schweikert, A. W., and Allen, R. C.: PET imaging of implanted human retinal pigment epithelial cells in the MPTP-induced primate model of Parkinson's disease, Exp. Neurol., 189, 361–368, 2004.
Drukker, M. and Benvenisty, N.: The immunogenicity of human embryonic stem-derived cells, Trends Biotechnol., 22, 136–141, 2004.
Drukker, M., Katz, G., Urbach, A., Schuldiner, M., Markel, G., Itskovitz-Eldor, J., and Benvenisty, N.: Characterization of the expression of MHC proteins in human embryonic stem cells, P. Natl. Acad. Sci. USA, 99, 9864–9869, 2002.
Duarte, E. P., Curcio, M., Canzoniero, L. M., and Duarte, C. B.: Neuroprotection by GDNF in the ischemic brain, Growth Factors, 30, 242–257, 2012.
Elsworth, J. D., Brittan, M. S., Taylor, J. R., Sladek Jr., J. R., al-Tikriti, M. S., Zea-Ponce, Y., and Roth, R. H.: Restoration of dopamine transporter density in the striatum of fetal ventral mesencephalon-grafted, but not sham-grafted, MPTP-treated parkinsonian monkeys, Cell Transplant., 5, 315–325, 1996.
Elsworth, J. D., Redmond Jr., D. E., Leranth, C., Bjugstad, K. B., Sladek Jr., J. R., Collier, T. J., and Roth, R. H.: AAV2-mediated gene transfer of GDNF to the striatum of MPTP monkeys enhances the survival and outgrowth of co-implanted fetal dopamine neurons, Exp. Neurol., 211, 252–258, 2008.
Elsworth, J. D., Sladek Jr., J. R., Taylor, J. R., Collier, T. J., Redmond Jr., D. E., and Roth, R. H.: Early gestational mesencephalon grafts, but not later gestational mesencephalon, cerebellum or sham grafts, increase dopamine in caudate nucleus of MPTP-treated monkeys, Neuroscience, 72, 477–484, 1996.
Emborg, M. E.: Nonhuman primate models of Parkinson's disease, Ilar J., 48, 339–355, 2007.
Emborg, M. E., Liu, Y., Xi, J., Zhang, X., Yin, Y., Lu, J., and Zhang, S. C.: Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain, Cell Rep., 3, 646–650, 2013a.
Emborg, M. E., Zhang, Z., Joers, V., Brunner, K., Bondarenko, V., Ohshima, S., and Zhang, S. C.: Intracerebral transplantation of differentiated human embryonic stem cells to hemiparkinsonian monkeys, Cell Transplant., 22, 831–838, 2013b.
Falk, T., Congrove, N. R., Zhang, S., McCourt, A. D., Sherman, S. J., and McKay, B. S.: PEDF and VEGF-A output from human retinal pigment epithelial cells grown on novel microcarriers, J. Biomed. Biotechnol., 2012, 278932, https://doi.org/10.1155/2012/278932, 2012.
Fifel, K., Vezoli, J., Dzahini, K., Claustrat, B., Leviel, V., Kennedy, H., and Cooper, H. M.: Alteration of daily and circadian rhythms following dopamine depletion in MPTP treated non-human primates, PLoS One, 9, e86240, https://doi.org/10.1371/journal.pone.0086240, 2014.
Fine, A., Hunt, S. P., Oertel, W. H., Nomoto, M., Chong, P. N., Bond, A., Waters, C., Temlett, J. A., Annett, L., and Dunnett, S: Transplantation of embryonic marmoset dopaminergic neurons to the corpus striatum of marmosets rendered parkinsonian by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Prog. Brain Res., 78, 479–489, 1988.
Flax, J. D., Aurora, S., Yang, C., Simonin, C., Wills, A. M., Billinghurst, L. L., and Snyder, E. Y.: Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes, Nat. Biotechnol., 16, 1033–1039, 1998.
Forno, L. S., DeLanney, L. E., Irwin, I., and Langston, J. W.: Similarities and differences between MPTP-induced parkinsonsim and Parkinson's disease, Neuropathologic considerations, Adv. Neurol., 60, 600–608, 1993.
Franke, S. K., van Kesteren, R. E., Hofman, S., Wubben, J. A., Smit, A. B., and Philippens, I. H.: Individual and Familial Susceptibility to MPTP in a Common Marmoset Model for Parkinson's Disease, Neurodegener. Dis., 16, 293–303, 2016.
Freed, C. R., Greene, P. E., Breeze, R. E., Tsai, W. Y., DuMouchel, W., Kao, R., and Fahn, S.: Transplantation of embryonic dopamine neurons for severe Parkinson's disease, N. Engl. J. Med., 344, 710–719, 2001.
Freed, W. J., Morihisa, J. M., Spoor, E., Hoffer, B. J., Olson, L., Seiger, A., and Wyatt, R. J.: Transplanted adrenal chromaffin cells in rat brain reduce lesion-induced rotational behaviour, Nature, 292, 351–352, 1981.
Fricker, R. A., Torres, E. M., and Dunnett, S. B.: The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain. I. Morphological characteristics, Neuroscience, 79, 695–710, 1997.
Fricker, R. A., Carpenter, M. K., Winkler, C., Greco, C., Gates, M. A., and Bjorklund, A.: Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain, J. Neurosci., 19, 5990–6005, 1999.
Gibb, W. R. and Lees, A. J.: Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease, J. Neurol. Neurosur. Ps., 54, 388–396, 1991.
Gonzalez, R., Garitaonandia, I., Crain, A., Poustovoitov, M., Abramihina, T., Noskov, A., and Semechkin, R.: Proof of concept studies exploring the safety and functional activity of human parthenogenetic-derived neural stem cells for the treatment of Parkinson's disease, Cell Transplant., 24, 681–690, 2015.
Gonzalez, R., Garitaonandia, I., Poustovoitov, M., Abramihina, T., McEntire, C., Culp, B., and Kern, R. A.: Neural Stem Cells Derived From Human Parthenogenetic Stem Cells Engraft and Promote Recovery in a Nonhuman Primate Model of Parkinsons Disease, Cell Transplant., 25, 1945–1966, 2016.
Gordon, P. H., Yu, Q., Qualls, C., Winfield, H., Dillon, S., Greene, P. E., and Pullman, S. L.: Reaction time and movement time after embryonic cell implantation in Parkinson disease, Arch. Neurol., 61, 858–861, 2004.
Grealish, S., Jonsson, M. E., Li, M., Kirik, D., Bjorklund, A., and Thompson, L. H.: The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson's disease, Brain, 133, 482–495, 2010.
Grealish, S., Diguet, E., Kirkeby, A., Mattsson, B., Heuer, A., Bramoulle, Y., and Parmar, M.: Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson's disease, Cell Stem Cell, 15, 653–665, 2014.
Greene, P., Cote, L., and Fahn, S.: Treatment of drug-induced psychosis in Parkinson's disease with clozapine, Adv. Neurol., 60, 703–706, 1993.
Grondin, R., Zhang, Z., Yi, A., Cass, W. A., Maswood, N., Andersen, A. H., and Gash, D. M.: Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys, Brain, 125, 2191–2201, 2002.
Gross, R. E., Watts, R. L., Hauser, R. A., Bakay, R. A., Reichmann, H., von Kummer, R., and Sandbrink, R.: Intrastriatal transplantation of microcarrier-bound human retinal pigment epithelial cells versus sham surgery in patients with advanced Parkinson's disease: a double-blind, randomised, controlled trial, Lancet Neurol., 10, 509–519, 2011.
Guzman, R., Uchida, N., Bliss, T. M., He, D., Christopherson, K. K., Stellwagen, D., and Steinberg, G. K.: Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI, P. Natl. Acad. Sci. USA, 104, 10211–10216, 2007.
Haber, S. N.: The primate basal ganglia: parallel and integrative networks, J. Chem. Neuroanat., 26, 317–330, 2003.
Hallett, P. J., Deleidi, M., Astradsson, A., Smith, G. A., Cooper, O., Osborn, T. M., and Isacson, O.: Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson's disease, Cell Stem Cell, 16, 269–274, 2015.
Hammond, R., Blaess, S., and Abeliovich, A.: Sonic hedgehog is a chemoattractant for midbrain dopaminergic axons, PLoS One, 4, e7007, https://doi.org/10.1371/journal.pone.0007007, 2009.
Hayashi, T., Wakao, S., Kitada, M., Ose, T., Watabe, H., Kuroda, Y., and Dezawa, M.: Autologous mesenchymal stem cell-derived dopaminergic neurons function in parkinsonian macaques, J. Clin. Invest., 123, 272–284, 2013.
Hernandez-Montiel, H. L., Tamariz, E., Sandoval-Minero, M. T., and Varela-Echavarria, A.: Semaphorins 3A, 3C, and 3F in mesencephalic dopaminergic axon pathfinding, J. Comp. Neurol., 506, 387–397, 2008.
Iacovitti, L., Donaldson, A. E., Marshall, C. E., Suon, S., and Yang, M.: A protocol for the differentiation of human embryonic stem cells into dopaminergic neurons using only chemically defined human additives: Studies in vitro and in vivo, Brain Res., 1127, 19–25, 2007.
Imitola, J., Raddassi, K., Park, K. I., Mueller, F. J., Nieto, M., Teng, Y. D., and Khoury, S. J.: Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway, P. Natl. Acad. Sci. USA, 101, 18117–18122, 2004.
Jackson-Lewis, V. and Przedborski, S.: The MPTP Mouse Model of Parkinson's Disease: the True, the False, and the Unknown. Parkinson's Disease, edited by: Nass, R. and Przedborski, S., Elsevier, 147–158, 2008.
Johannessen, J. N., Chiueh, C. C., Burns, R. S., and Markey, S. P.: Differences in the metabolism of MPTP in the rodent and primate parallel differences in sensitivity to its neurotoxic effects, Life Sci., 36, 219–224, 1985.
Joksimovic, M., Yun, B. A., Kittappa, R., Anderegg, A. M., Chang, W. W., Taketo, M. M., and Awatramani, R. B.: Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis, Nat. Neurosci., 12, 125–131, 2009.
Jossan, S. S., Sakurai, E., and Oreland, L.: MPTP toxicity in relation to age, dopamine uptake and MAO-B activity in two rodent species, Pharmacol. Toxicol., 64, 314–318, 1989.
Kawasaki, H., Mizuseki, K., Nishikawa, S., Kaneko, S., Kuwana, Y., Nakanishi, S., and Sasai, Y.: Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity, Neuron., 28, 31–40, 2000.
Kawasaki, H., Suemori, H., Mizuseki, K., Watanabe, K., Urano, F., Ichinose, H., and Sasai, Y.: Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity, P. Natl. Acad. Sci. USA, 29, 1580–1585, 2002.
Kefalopoulou, Z., Politis, M., Piccini, P., Mencacci, N., Bhatia, K., Jahanshahi, M., and Foltynie, T.: Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports, JAMA Neurol., 71, 83–87, 2014.
Kelly, S., Bliss, T. M., Shah, A. K., Sun, G. H., Ma, M., Foo, W. C., and Steinberg, G. K.: Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex, P. Natl. Acad. Sci. USA, 101, 11839–11844, 2004.
Kennedy, H. and Dehay, C.: Self-organization and interareal networks in the primate cortex, Prog. Brain Res., 195, 341–360, 2012.
Kikuchi, T., Morizane, A., Doi, D., Onoe, H., Hayashi, T., Kawasaki, T., and Takahashi, J.: Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson's disease, J. Parkinsons Dis., 1, 395–412, 2011.
Kim, J., Su, S. C., Wang, H., Cheng, A. W., Cassady, J. P., Lodato, M. A., and Jaenisch, R.: Functional integration of dopaminergic neurons directly converted from mouse fibroblasts, Cell Stem Cell, 9, 413–419, 2011.
Kirkeby, A., Nelander, J., and Parmar, M.: Generating regionalized neuronal cells from pluripotency, a step-by-step protocol, Front Cell Neurosci., 6, 1–4, 2012.
Kirkeby, A., Nolbrant, S., Tiklova, K., Heuer, A., Kee, N., Cardoso, T., and Parmar, M.: Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson's Disease, Cell Stem Cell, 20, 135–148, 2017.
Kirkeby, A., Parmar, M., and Barker, R. A.: Strategies for bringing stem cell-derived dopamine neurons to the clinic: A European approach (STEM-PD), Prog. Brain Res., Elsevier, 7, 165–190, 2017.
Klein, R. L., Dayton, R. D., Leidenheimer, N. J., Jansen, K., Golde, T. E., and Zweig, R. M.: Efficient neuronal gene transfer with AAV8 leads to neurotoxic levels of tau or green fluorescent proteins, Mol. Ther., 13, 517–527, 2006.
Kolk, S. M., Gunput, R. A., Tran, T. S., van den Heuvel, D. M., Prasad, A. A., Hellemons, A. J., and Pasterkamp R. J.: Semaphorin 3F is a bifunctional guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting, J. Neurosci., 29, 12542–12557, 2009.
Kordower, J. H., Emborg, M. E., Bloch, J., Ma, S. Y., Chu, Y., Leventhal, L., and Aebischer, P.: Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease, Science, 290, 767–773, 2000.
Kordower, J. H., Vinuela, A., Chu, Y., Isacson, O., and Redmond Jr., D. E.: Parkinsonian monkeys with prior levodopa-induced dyskinesias followed by fetal dopamine precursor grafts do not display graft-induced dyskinesias, J. Comp. Neurol., 525, 498–512, 2017.
Kriks, S., Shim, J. W., Piao, J., Ganat, Y. M., Wakeman, D. R., Xie, Z., and Studer, L.: Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease, Nature, 480, 547–551, 2011.
Kuan, W. L., Lin, R., Tyers, P., and Barker, R. A.: The importance of A9 dopaminergic neurons in mediating the functional benefits of fetal ventral mesencephalon transplants and levodopa-induced dyskinesias, Neurobiol. Dis., 25, 594–608, 2007.
La Manno, G., Gyllborg, D., Codeluppi, S., Nishimura, K., Salto, C., Zeisel, A., and Linnarsson, S.: Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells, Cell, 167, 566–580, 2016.
Lange, K. W.: Behavioural effects and supersensitivity in the rat following intranigral MPTP and MPP+ administration, Eur. J. Pharmacol., 175, 57–61, 1990.
Langston, J. W. and Ballard, P.: Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): implications for treatment and the pathogenesis of Parkinson's disease, Can. J. Neurol. Sci., 11, 160–165, 1984.
Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M., and McKay, R. D.: Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells, Nat. Biotechnol., 18, 675–679, 2000.
Lelos, M. J., Morgan, R. J., Kelly, C. M., Torres, E. M., Rosser, A. E., and Dunnett, S. B.: Amelioration of non-motor dysfunctions after transplantation of human dopamine neurons in a model of Parkinson's disease, Exp. Neurol., 278, 54–61, 2016.
Leranth, C., Sladek Jr., J. R., Roth, R. H., and Redmond Jr., D. E.: Efferent synaptic connections of dopaminergic neurons grafted into the caudate nucleus of experimentally induced parkinsonian monkeys are different from those of control animals, Exp. Brain Res., 123, 323–333, 1998.
Li, J., Duarte, T., Kocabas, A., Works, M., McConnell, S. K., and Hynes, M. A.: Evidence for topographic guidance of dopaminergic axons by differential Netrin-1 expression in the striatum, Mol. Cell Neurosci., 61, 85–96, 2014.
Li, T., Zheng, J., Xie, Y., Wang, S., Zhang, X., Li, J., and Ji, W.: Transplantable neural progenitor populations derived from rhesus monkey embryonic stem cells, Stem Cells, 23, 1295–1303, 2005.
Li, W., Englund, E., Widner, H., Mattsson, B., van Westen, D., Latt, J., and Li, J. Y.: Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain, P. Natl. Acad. Sci. USA, 113, 6544–6549, 2016.
Lin, L., Rao Y., and Isacson, O.: Netrin-1 and slit-2 regulate and direct neurite growth of ventral midbrain dopaminergic neurons, Mol. Cell Neurosci., 28, 547–555, 2005.
Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S., and Collins, F.: GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons, Science, 260, 1130–1132, 1993.
Lindvall, O.: Transplantation into the human brain: present status and future possibilities, J. Neurol. Neurosur. Ps., Suppl., 39–54, 1989.
Lindvall, O.: Developing dopaminergic cell therapy for Parkinson's disease – give up or move forward?, Mov. Disord., 28, 268–273, 2013.
Lindvall, O., Backlund, E. O., Farde, L., Sedvall, G., Freedman, R., Hoffer, B., and Olson, L.: Transplantation in Parkinson's disease: two cases of adrenal medullary grafts to the putamen, Ann. Neurol., 22, 457–468, 1987.
Lindvall, O., Rehncrona, S., Gustavii, B., Brundin, P., Astedt, B., Widner, H., and Olson, L.: Fetal dopamine-rich mesencephalic grafts in Parkinson's disease, Lancet, 2, 1483–1484, 1988.
Lindvall, O., Brundin, P., Widner, H., Rehncrona, S., Gustavii, B., Frackowiak, R., Leenders, K. L., Sawle, G., Rothwell, J. C., Marsden, C. D., and Bjorklund, A.: Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease, Science 247, 574–577, 1990.
Lins, L. C., Wianny, F., Livi, S., Dehay, C., Duchet-Rumeau, J., and Gerard, J. F.: Effect of polyvinylidene fluoride electrospun fiber orientation on neural stem cell differentiation, J. Biomed. Mater. Res. B Appl. Biomater., https://doi.org/10.1002/jbm.b.33778, 2016a.
Lins, L. C., Wianny, F., Livi, S., Hidalgo, I. A., Dehay, C., Duchet-Rumeau, J., and Gerard, J. F.: Development of Bioresorbable Hydrophilic-Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering, Biomacromolecules, 17, 3172–3187, 2016b.
Liu, H. S., Jan, M. S., Chou, C. K., Chen, P. H., and Ke, N. J.: Is green fluorescent protein toxic to the living cells?, Biochem. Biophys. Res. Commun., 260, 712–717, 1999.
Liu, X., Li, F., Stubblefield, E. A., Blanchard, B., Richards, T. L., Larson, G. A., and Li, C. Y.: Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells, Cell Res., 22, 321–332, 2012.
Louveau, A., Harris, T. H., and Kipnis, J.: Revisiting the Mechanisms of CNS Immune Privilege, Trends Immunol., 36, 569–577, 2015.
Luquin, M. R., Manrique, M., Guillen, J., Arbizu, J., Ordonez, C., and Marcilla, I.: Enhanced GDNF expression in dopaminergic cells of monkeys grafted with carotid body cell aggregates, Brain Res., 1375, 120–127, 2011.
Madrazo, I. and Franco-Bourland, R. E.: Technique of autoadrenal transplantation, J. Neurosurg., 75, 1001–1002, 1991.
Madrazo, I., Drucker-Colin, R., Diaz, V., Martinez-Mata, J., Torres, C., and Becerril, J. J.: Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson's disease, N. Engl. J. Med., 316, 831–834, 1987.
Marmion, D. J. and Kordower, J. H.: alpha-Synuclein nonhuman primate models of Parkinson's disease, J. Neural. Transm., https://doi.org/10.1007/s00702-017-1720-0, 2017.
Martino, G. and Pluchino, S.: The therapeutic potential of neural stem cells, Nat. Rev. Neurosci., 7, 395–406, 2006.
Mendez, I., Sadi, D., and Hong, M.: Reconstruction of the nigrostriatal pathway by simultaneous intrastriatal and intranigral dopaminergic transplants, J. Neurosci., 16, 7216–7227, 1996.
Mendez, I., Baker, K. A., and Hong, M.: Simultaneous intrastriatal and intranigral grafting (double grafts) in the rat model of Parkinson's disease, Brain Res. Rev., 32, 328–339, 2000.
Moore, S. F., Guzman, N. V., Mason, S. L., Williams-Gray, C. H., and Barker, R. A.: Which patients with Parkinson's disease participate in clinical trials? One centre's experiences with a new cell based therapy trial (TRANSEURO), J. Parkinsons Dis., 4, 671–676, 2014.
Morihisa, J. M., Nakamura, R. K., Freed, W. J., Mishkin, M., and Wyatt, R. J.: Adrenal medulla grafts survive and exhibit catecholamine-specific fluorescence in the primate brain, Exp. Neurol., 84, 643–653, 1984.
Morizane, A., Doi, D., Kikuchi, T., Okita, K., Hotta, A., Kawasaki, T., and Takahashi, J.: Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a non-human primate, Stem. Cell Rep., 1, 283–292, 2013.
Nerobkova, L. N., Markina, N. V., Voronina, T. A., Kraineva, V. A., Garibova, T. L., Molodavkin, G. M., and Sharkova, L. M.: Sleep disorders and impaired learning ability in rats with parkinsonian syndrome induced by MPTP, Biull. Eksp. Biol. Med., 122, 288–291, 1996.
Nikkhah, G., Cunningham, M. G., Jodicke, A., Knappe, U., and Bjorklund, A.: Improved graft survival and striatal reinnervation by microtransplantation of fetal nigral cell suspensions in the rat Parkinson model, Brain Res., 633, 133–143, 1994.
Nishimura, K., Murayama, S., and Takahashi, J.: Identification of Neurexophilin 3 as a Novel Supportive Factor for Survival of Induced Pluripotent Stem Cell-Derived Dopaminergic Progenitors, Stem Cells Transl. Med., 4, 932–944, 2015.
Ohmachi, S., Watanabe, Y., Mikami, T., Kusu, N., Ibi, T., Akaike, A., and Itoh, N.: FGF-20, a novel neurotrophic factor, preferentially expressed in the substantia nigra pars compacta of rat brain, Biochem. Biophys. Res. Commun., 277, 355–360, 2000.
Oikonomou, E. and Paparrigopoulos, T.: Neuropsychiatric manifestations in Parkinson's disease, Psychiatriki, 26, 116–130, 2015.
Olanow, C. W., Goetz, C. G., Kordower, J. H., Stoessl, A. J., Sossi, V., Brin, M. F., and Freeman, T. B.: A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease, Ann. Neurol., 54, 403–414, 2003.
Owen, A. M., James, M., Leigh, P. N., Summers, B. A., Marsden, C. D., Quinn, N. P., and Robbins, T. W.: Fronto-striatal cognitive deficits at different stages of Parkinson's disease, Brain, 115, 1727–1751, 1992.
Park, C. H., Minn, Y. K., Lee, J. Y., Choi, D. H., Chang, M. Y., Shim, J. W., and Lee, S. H.: In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons, J. Neurochem., 92, 1265–1276, 2005.
Peng, S., Ma, Y., Flores, J., Cornfeldt, M., Mitrovic, B., Eidelberg, D., and Doudet, D. J.: Modulation of Abnormal Metabolic Brain Networks by Experimental Therapies in a Nonhuman Primate Model of Parkinson Disease: An Application to Human Retinal Pigment Epithelial Cell Implantation, J. Nucl. Med., 57, 1591–1598, 2016.
Perez-Otano, I., Oset, C., Luquin, M. R., Herrero, M. T., Obeso, J. A., and Del Rio, J.: MPTP-induced parkinsonism in primates: pattern of striatal dopamine loss following acute and chronic administration, Neurosci. Lett., 175, 121–125, 1994.
Perlow, M. J., Freed, W. J., Hoffer, B. J., Seiger, A., Olson, L., and Wyatt, R. J.: Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system, Science, 204, 643–647, 1979.
Perrier, A. L., Tabar, V., Barberi, T., Rubio, M. E., Bruses, J., Topf, N., and Studer, L.: Derivation of midbrain dopamine neurons from human embryonic stem cells, P. Natl. Acad. Sci. USA, 101, 12543–12548, 2004.
Pfisterer, U., Kirkeby, A., Torper, O., Wood, J., Nelander, J., Dufour, A., and Parmar, M.: Direct conversion of human fibroblasts to dopaminergic neurons, P. Natl. Acad. Sci. USA, 108, 10343–10348, 2011a.
Pfisterer, U., Wood, J., Nihlberg, K., Hallgren, O., Bjermer, L., Westergren-Thorsson, G., and Parmar, M.: Efficient induction of functional neurons from adult human fibroblasts, Cell Cycle, 10, 3311–3316, 2011b.
Poewe, W.: Non-motor symptoms in Parkinson's disease, Eur. J. Neurol., 15, Suppl 1, 14–20, 2008.
Politis, M. and Piccini, P.: Brain imaging after neural transplantation, Prog. Brain Res., 184, 193–203, 2010.
Pollard, S. M., Wallbank, R., Tomlinson, S., Grotewold, L., and Smith, A.: Fibroblast growth factor induces a neural stem cell phenotype in foetal forebrain progenitors and during embryonic stem cell differentiation, Mol. Cell Neurosci., 38, 393–403, 2008.
Potts, L. F., Wu, H., Singh, A., Marcilla, I., Luquin, M. R., and Papa, S. M.: Modeling Parkinson's disease in monkeys for translational studies, a critical analysis, Exp. Neurol., 256, 133–143, 2014.
Purisai, M. G., McCormack, A. L., Langston, W. J., Johnston, L. C., and Di Monte, D. A.: Alpha-synuclein expression in the substantia nigra of MPTP-lesioned non-human primates, Neurobiol. Dis., 20, 898–906, 2005.
Raghanti, M. A., Stimpson, C. D., Marcinkiewicz, J. L., Erwin, J. M., Hof, P. R., and Sherwood, C. C.: Cortical dopaminergic innervation among humans, chimpanzees, and macaque monkeys: A comparative study, Neuroscience, 155, 203–220, 2008.
Raskin, S. A., Borod, J. C., and Tweedy, J.: Neuropsychological aspects of Parkinson's disease, Neuropsychol. Rev., 1, 185–221, 1990.
Redmond Jr., D. E., Sladek Jr., J. R., Roth, R. H., Collier, T. J., Elsworth, J. D., Deutch, A. Y., and Haber, S.: Fetal neuronal grafts in monkeys given methylphenyltetrahydropyridine, Lancet, 1, 1125–1127, 1986.
Redmond Jr., D. E., Bjugstad, K. B., Teng, Y. D., Ourednik, V., Ourednik, J., Wakeman, D. R., and Snyder, E. Y.: Behavioral improvement in a primate Parkinson's model is associated with multiple homeostatic effects of human neural stem cells, P. Natl. Acad. Sci. USA, 104, 12175–12180, 2007.
Redmond Jr., D. E., Vinuela, A., Kordower, J. H., and Isacson, O.: Influence of cell preparation and target location on the behavioral recovery after striatal transplantation of fetal dopaminergic neurons in a primate model of Parkinson's disease, Neurobiol. Dis., 29, 103–116, 2008.
Redmond Jr., D. E., Elsworth, J. D., Roth, R. H., Leranth, C., Collier, T. J., Blanchard, B., and Sladek Jr., J. R.: Embryonic substantia nigra grafts in the mesencephalon send neurites to the host striatum in non-human primate after overexpression of GDNF, J. Comp. Neurol., 515, 31–40, 2009.
Redmond Jr., D. E., McEntire, C. R., Kingsbery, J. P., Leranth, C., Elsworth, J. D., Bjugstad, K. B., and Sladek Jr., J. R.: Comparison of fetal mesencephalic grafts, AAV-delivered GDNF, and both combined in an MPTP-induced nonhuman primate Parkinson's model, Mol. Ther., 21, 2160–2168, 2013.
Ren, Z., Wang, J., Wang, S., Zou, C., Li, X., Guan, Y., and Zhang, Y. A.: Autologous transplantation of GDNF-expressing mesenchymal stem cells protects against MPTP-induced damage in cynomolgus monkeys, Sci. Rep., 3, 1–11, 2013.
Riachi, N. J., Harik, S. I., Kalaria, R. N., and Sayre, L. M.: On the mechanisms underlying 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. II. Susceptibility among mammalian species correlates with the toxin's metabolic patterns in brain microvessels and liver, J. Pharmacol. Exp. Ther., 244, 443–448, 1988.
Rivetti di Val Cervo, P., Romanov, R. A., Spigolon, G., Masini, D., Martin-Montanez, E., Toledo, E. M., and Arenas, E.: Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson's disease model, Nat. Biotechnol., 35, 444–452, 2017.
Roy, N. S., Cleren, C., Singh, S. K., Yang, L., Beal, M. F., and Goldman, S. A.: Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes, Nat. Med., 12, 1259–1268, 2006.
Russ, K., Flores, J., Brudek, T., and Doudet, D. J.: Differential behavioral outcomes following neonatal versus fetal human retinal pigment epithelial cell striatal implants in parkinsonian rats, J. Neural. Transm., 124, 455–462, 2017.
Salmonowicz, H. and Passos, J. F.: Detecting senescence: a new method for an old pigment, Aging Cell, 16, 432–434, 2017.
Sanchez-Pernaute, R., Studer, L., Ferrari, D., Perrier, A., Lee, H., Vinuela, A., and Isacson, O.: Long-term survival of dopamine neurons derived from parthenogenetic primate embryonic stem cells (cyno-1) after transplantation, Stem Cells, 23, 914–922, 2005.
Sautter, J., Tseng, J. L., Braguglia, D., Aebischer, P., Spenger, C., Seiler, R. W., and Zurn, A. D.: Implants of polymer-encapsulated genetically modified cells releasing glial cell line-derived neurotrophic factor improve survival, growth, and function of fetal dopaminergic grafts, Exp. Neurol., 149, 230–236, 1998.
Scherman, D., Desnos, C., Darchen, F., Pollak, P., Javoy-Agid, F., and Agid, Y.: Striatal dopamine deficiency in Parkinson's disease: role of aging, Ann. Neurol., 26. 551–557, 1989.
Schneider, J. S. and Kovelowski, C. J.: Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys, Brain Res., 519, 122–128, 1990.
Sensharma, P., Madhumathi, G., Jayant, R. D., and Jaiswal, A. K.: Biomaterials and cells for neural tissue engineering: Current choices, Mater. Sci. Eng. C Mater. Biol. Appl., 77, 1302–1315, 2017.
Sieber, B. A., Kuzmin, A., Canals, J. M., Danielsson, A., Paratcha, G., Arenas, E., and Ibanez, C. F.: Disruption of EphA/ephrin-a signaling in the nigrostriatal system reduces dopaminergic innervation and dissociates behavioral responses to amphetamine and cocaine, Mol. Cell Neurosci., 26, 418–428, 2004.
Simuni, T. and Sethi, K.: Nonmotor manifestations of Parkinson's disease, Ann. Neurol., 64, Suppl. 2, S65–80, 2008.
Sinclair, S. R., Svendsen, C. N., Torres, E. M., Martin, D., Fawcett, J. W., and Dunnett, S. B.: GDNF enhances dopaminergic cell survival and fibre outgrowth in embryonic nigral grafts, Neuroreport, 7, 2547–2552, 1996.
Sladek Jr., J. R. and Shoulson, I.: Neural transplantation: a call for patience rather than patients, Science, 240, 1386–1388, 1988.
Sladek Jr., J. R., Redmond Jr., D. E., Collier, T. J., Blount, J. P., Elsworth, J. D., Taylor, J. R., and Roth, R. H.: Fetal dopamine neural grafts: extended reversal of methylphenyltetrahydropyridine-induced parkinsonism in monkeys, Prog. Brain Res., 78, 497–506, 1988.
Sladek Jr., J. R., Collier, T. J., Elsworth, J. D., Roth, R. H., Taylor, J. R., and Redmond Jr. D. E.: Intrastriatal grafts from multiple donors do not result in a proportional increase in survival of dopamine neurons in nonhuman primates, Cell Transplant., 7, 87–96, 1998.
Sladek Jr., J. R., Collier, T. J., Elsworth, J. D., Taylor, J. R., Roth, R. H., and Redmond Jr., D. E.: Can graft-derived neurotrophic activity be used to direct axonal outgrowth of grafted dopamine neurons for circuit reconstruction in primates?, Exp. Neurol., 124, 134–139, 1993a.
Sladek Jr., J. R., Elsworth, J. D., Roth, R. H., Evans, L. E., Collier, T. J., Cooper, S. J., and Redmond Jr., D. E.: Fetal dopamine cell survival after transplantation is dramatically improved at a critical donor gestational age in nonhuman primates, Exp. Neurol., 122, 16–27, 1993b.
Sladek Jr., J. R., Bjugstad, K. B., Collier, T. J., Bundock, E. A., Blanchard, B. C., Elsworth, J. D., and Redmond Jr., D. E.: Embryonic substantia nigra grafts show directional outgrowth to cografted striatal grafts and potential for pathway reconstruction in nonhuman primate, Cell Transplant., 17, 427–444, 2008.
Sortwell, C. E., Blanchard, B. C., Collier, T. J., Elsworth, J. D., Taylor, J. R., Roth, R. H., and Sladek Jr., J. R.: Pattern of synaptophysin immunoreactivity within mesencephalic grafts following transplantation in a parkinsonian primate model, Brain Res., 791, 117–124, 1998.
Spitzer, N., Sammons, G. S., and Price, E. M.: Autofluorescent cells in rat brain can be convincing impostors in green fluorescent reporter studies, J Neurosci. Meth., 197, 48–55, 2011.
Starr, P. A., Wichmann, T., van Horne, C., and Bakay, R. A.: Intranigral transplantation of fetal substantia nigra allograft in the hemiparkinsonian rhesus monkey, Cell Transplant., 8, 37–45, 1999.
Stephenson, D. T., Meglasson, M. D., Connell, M. A., Childs, M. A., Hajos-Korcsok, E., and Emborg, M. E.: The effects of a selective dopamine D2 receptor agonist on behavioral and pathological outcome in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated squirrel monkeys, J. Pharmacol. Exp. Ther., 314, 1257–1266, 2005.
Stromberg, I., Johnson, S., Hoffer, B., and Olson, L.: Reinnervation of dopamine-denervated striatum by substantia nigra transplants: immunohistochemical and electrophysiological correlates, Neuroscience, 14, 981–990, 1985.
Subramanian, T., Marchionini, D., Potter, E. M., and Cornfeldt, M. L.: Striatal xenotransplantation of human retinal pigment epithelial cells attached to microcarriers in hemiparkinsonian rats ameliorates behavioral deficits without provoking a host immune response, Cell Transplant., 11, 207–214, 2002.
Sullivan, A. M. and Toulouse, A.: Neurotrophic factors for the treatment of Parkinson's disease, Cytokine Growth Factor Rev., 22, 157–165, 2011.
Sun, Y., Pollard, S., Conti, L., Toselli, M., Biella, G., Parkin, G., and Smith, A.: Long-term tripotent differentiation capacity of human neural stem (NS) cells in adherent culture, Mol. Cell Neurosci., 38, 245–258, 2008.
Sundberg, M., Bogetofte, H., Lawson, T., Jansson, J., Smith, G., Astradsson, A., and Isacson, O.: Improved cell therapy protocols for Parkinson's disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons, Stem Cells, 31, 1548–1562, 2013.
Sundstrom, E. and Samuelsson, E. B.: Comparison of key steps in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in rodents, Pharmacol. Toxicol., 81, 226–231, 1997.
Swallow, D. M., Lawton, M. A., Grosset, K. A., Malek, N., Smith, C. R., Bajaj, N. P., and Grosset, D. G.: Variation in Recent Onset Parkinson's Disease: Implications for Prodromal Detection, J. Parkinsons Dis., 6, 289–300, 2016.
Takagi, Y., Takahashi, J., Saiki, H., Morizane, A., Hayashi, T., Kishi, Y., and Hashimoto, N.: Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model, J. Clin. Invest., 115, 102–109, 2005.
Taylor, J. R., Elsworth, J. D., Roth, R. H., Sladek Jr., J. R., and Redmond Jr., D. E.: Cognitive and motor deficits in the acquisition of an object retrieval/detour task in MPTP-treated monkeys, Brain, 113, 617–637, 1990.
Taylor, J. R., Elsworth, J. D., Roth, R. H., Sladek, Jr., J. R., Collier, T. J.. and Redmond Jr., D. E.: Grafting of fetal substantia nigra to striatum reverses behavioral deficits induced by MPTP in primates: a comparison with other types of grafts as controls, Exp. Brain Res., 85, 335–348, 1991.
Thompson, L., Barraud, P., Andersson, E., Kirik, D., and Bjorklund, A.: Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections, J. Neurosci., 25, 6467–6477, 2005.
Thompson, L. H., Grealish, S., Kirik, D., and Bjorklund, A.: Reconstruction of the nigrostriatal dopamine pathway in the adult mouse brain, Eur. J. Neurosci., 30, 625–638, 2009.
Torre, E. R., Gutekunst, C. A., and Gross, R. E.: Expression by midbrain dopamine neurons of Sema3A and 3F receptors is associated with chemorepulsion in vitro but a mild in vivo phenotype, Mol. Cell Neurosci., 44, 135–153, 2010.
Torres, E. M., Monville, C., Gates, M. A., Bagga, V., and Dunnett, S. B.: Improved survival of young donor age dopamine grafts in a rat model of Parkinson's disease, Neuroscience, 146, 1606–1617, 2007.
Torres, E. M., Dowd, E., and Dunnett, S. B.: Recovery of functional deficits following early donor age ventral mesencephalic grafts in a rat model of Parkinson's disease, Neuroscience, 154, 631–640, 2008.
Vagaska, B., New, S. E., Alvarez-Gonzalez, C., D'Acquisto, F., Gomez, S. G., Bulstrode, N. W., and Ferretti, P.: MHC-class-II are expressed in a subpopulation of human neural stem cells in vitro in an IFNgamma-independent fashion and during development, Sci. Rep., 6, 24251, https://doi.org/10.1038/srep24251, 2016.
Vazin, T., Chen, J., Lee, C. T., Amable, R., and Freed, W. J.: Assessment of stromal-derived inducing activity in the generation of dopaminergic neurons from human embryonic stem cells, Stem Cells, 26, 1517–1525, 2008.
Vezoli, J., Fifel, K., Leviel, V., Dehay, C., Kennedy, H., Cooper, H. M., and Procyk, E.: Early presymptomatic and long-term changes of rest activity cycles and cognitive behavior in a MPTP-monkey model of Parkinson's disease, PLoS ONE, 6, e23952, https://doi.org/10.1371/journal.pone.0023952, 2011.
Vezoli, J., Dzahini, K., Costes, N., Wilson, C. R., Fifel, K., Cooper, H. M., and Procyk, E.: Increased DAT binding in the early stage of the dopaminergic lesion: a longitudinal [11C]PE2I binding study in the MPTP-monkey, Neuroimage, 102, 249–261, 2014.
Wakeman, D. R., Hofmann, M. R., Redmond Jr., D. E., Teng, Y. D., and Snyder, E. Y.: Long-term multilayer adherent network (MAN) expansion, maintenance, and characterization, chemical and genetic manipulation, and transplantation of human fetal forebrain neural stem cells, Curr. Protoc. Stem. Cell Biol., 2, 692–701, https://doi.org/10.1002/9780470151808.sc02d03s9, 2009.
Wakeman, D. R., Redmond Jr., D. E., Dodiya, H. B., Sladek Jr., J. R., Leranth, C., Teng, Y. D., and Snyder, E. Y.: Human neural stem cells survive long term in the midbrain of dopamine-depleted monkeys after GDNF overexpression and project neurites toward an appropriate target, Stem Cells Transl. Med., 3, 692–701, 2014.
Wang, S., Zou, C., Fu, L., Wang, B., An, J., Song, G., and Chen, Z.: Autologous iPSC-derived dopamine neuron transplantation in a nonhuman primate Parkinson's disease model, Cell Discov., 1, 15012, https://doi.org/10.1038/celldisc.2015.12, 2015.
Watanabe, K., Kamiya, D., Nishiyama, A., Katayama, T., Nozaki, S., Kawasaki, H., and Sasai, Y.: Directed differentiation of telencephalic precursors from embryonic stem cells, Nat. Neurosci., 8, 288–296, 2005.
Watts, R. L., Raiser, C. D., Stover, N. P., Cornfeldt, M. L., Schweikert, A. W., Allen, R. C., and Bakay R. A.: Stereotaxic intrastriatal implantation of human retinal pigment epithelial (hRPE) cells attached to gelatin microcarriers: a potential new cell therapy for Parkinson's disease, J. Neural. Transm. Suppl., 65, 215–227, 2003.
Wianny, F., Bourillot, P. Y., and Dehay, C.: Embryonic stem cells in non-human primates: An overview of neural differentiation potential, Differentiation, 81, 142–152, 2011.
Widner, H., Brundin, P., Bjorklund, A., and Moller, E.: Survival and immunogenicity of dissociated allogeneic fetal neural dopamine-rich grafts when implanted into the brains of adult mice, Exp. Brain Res., 76, 187–197, 1989.
Wilby, M. J., Sinclair, S. R., Muir, E. M., Zietlow, R., Adcock, K. H., Horellou, P., and Fawcett, J. W.: A glial cell line-derived neurotrophic factor-secreting clone of the Schwann cell line SCTM41 enhances survival and fiber outgrowth from embryonic nigral neurons grafted to the striatum and to the lesioned substantia nigra, J. Neurosci., 19, 2301–2312, 1999.
Williams, S. M. and Goldman-Rakic, P. S.: Widespread origin of the primate mesofrontal dopamine system, Cereb Cortex, 8, 321–345, 1998.
Wolff, E. F., Mutlu, L., Massasa, E. E., Elsworth, J. D., Eugene Redmond Jr., D., and Taylor, H. S.: Endometrial stem cell transplantation in MPTP-exposed primates: an alternative cell source for treatment of Parkinson's disease, J. Cell Mol. Med., 19, 249–256, 2015.
Xi, J., Liu, Y., Liu, H., Chen, H., Emborg, M. E., and Zhang, S. C.: Specification of midbrain dopamine neurons from primate pluripotent stem cells, Stem Cells, 30, 1655–1663, 2012.
Xiao, D., Miller, G. M., Jassen, A., Westmoreland, S. V., Pauley, D., and Madras, B. K.: Ephrin/Eph receptor expression in brain of adult nonhuman primates: implications for neuroadaptation, Brain Res., 1067, 67–77, 2006.
Xu, Q., Jiang, X., Ke, Y., Zhang, S., Xu, R., and Zeng, Y.: Gene therapy in hemiparkinsonian rhesus monkeys: long-term survival and behavioral recovery by transplantation of autologous human tyrosine hydroxylase-expressing neural stem cells, Cytotherapy, 12, 226–237, 2010.
Yan, Y., Yang, D., Zarnowska, E. D., Du, Z., Werbel, B., Valliere, C., and Zhang, S. C.: Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells, Stem Cells, 23, 781–790, 2005.
Yang, D., Zhang, Z. J., Oldenburg, M., Ayala, M., and Zhang, S. C.: Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats, Stem Cells, 26, 55–63, 2008.
Yang, Y., Tang, B. S., and Guo, J. F.: Parkinson's Disease and Cognitive Impairment, Parkinsons Dis., 2016, 6734678, https://doi.org/10.1155/2016/6734678, 2016.
Yin, D., Valles, F. E., Fiandaca, M. S., Forsayeth, J., Larson, P., Starr, P., and K. S. Bankiewicz: Striatal volume differences between non-human and human primates, J. Neurosci. Meth., 176, 200–205, 2009.
Yue, Y., Widmer, D. A., Halladay, A. K., Cerretti, D. P., Wagner, G. C., Dreyer, J. L., and Zhou, R.: Specification of distinct dopaminergic neural pathways: roles of the Eph family receptor EphB1 and ligand ephrin-B2, J. Neurosci., 19, 2090–2101, 1999.
Yun, J. W., Ahn, J. B., and Kang, B. C.: Modeling Parkinson's disease in the common marmoset (Callithrix jacchus): overview of models, methods, and animal care, Lab. Anim. Res., 31, 155–165, 2015.
Zeng, X., Cai, J., Chen, J., Luo, Y., You, Z. B., Fotter, E., and Freed, W. J.: Dopaminergic differentiation of human embryonic stem cells, Stem Cells, 22, 925–940, 2004.
Zhang, C., Jin, Y., Ziemba, K. S., Fletcher, A. M., Ghosh, B., Truit, E., and Smith, G. M.: Long distance directional growth of dopaminergic axons along pathways of netrin-1 and GDNF, Exp. Neurol., 250, 156–164, 2013.
Zhou, Y., Sun, M., Li, H., Yan, M., He, Z., Wang, W., and Lu, S.: Recovery of behavioral symptoms in hemi-parkinsonian rhesus monkeys through combined gene and stem cell therapy, Cytotherapy, 15, 467–480, 2013.
Short summary
We propose for this special issue an exhaustive review of past and most recent advances on the topic of cell replacement in Parkinson’s disease, describing the different procedures using transplantation of various cell sources as a therapeutic approach and linked therapeutic behavioral and/or functional outcomes. We conclude by opening perspectives on future promising developments for the use of cell-replacement therapy in research and its translation to the clinic.
We propose for this special issue an exhaustive review of past and most recent advances on the...
Special issue