Articles | Volume 3, issue 1
https://doi.org/10.5194/pb-3-9-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/pb-3-9-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The common marmoset (Callithrix jacchus): a relevant preclinical model of human (auto)immune-mediated inflammatory disease of the brain
Bert A. 't Hart
CORRESPONDING AUTHOR
Department Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
Jordon Dunham
Department Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
S. Anwar Jagessar
Department Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
Yolanda S. Kap
Department Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
Related subject area
Immunology
Experimental autoimmune encephalomyelitis in the common marmoset: a translationally relevant model for the cause and course of multiple sclerosis
Use of nonhuman primates in obstructive lung disease research – is it required?
Bert A. 't Hart
Primate Biol., 6, 17–58, https://doi.org/10.5194/pb-6-17-2019, https://doi.org/10.5194/pb-6-17-2019, 2019
Short summary
Short summary
Aging Western societies are facing an increasing prevalence of chronic autoimmune-mediated inflammatory disorders (AIMIDs). Animal models have a crucial role in the preclinical research of disease mechanisms and therapy development. Multiple sclerosis is an AIMID specifically affecting the brain and spinal cord. We discuss here a unique MS model in common marmoset monkeys, which has provided novel insights into the disease process as well as into the mechanism of action of new therapies.
Franziska Dahlmann and Katherina Sewald
Primate Biol., 4, 131–142, https://doi.org/10.5194/pb-4-131-2017, https://doi.org/10.5194/pb-4-131-2017, 2017
Cited articles
Arnon, R., Sela, M., and Teitelbaum, D.: New insights into the
mechanism of action of copolymer 1 in experimental allergic
encephalomyelitis and multiple sclerosis, J. Neurol., 243, 8–13, 1996.
Ascherio, A. and Munger, K. L.: Environmental risk factors for
multiple sclerosis. Part I: the role of infection, Ann. Neurol., 61, 288–299, 2007a.
Ascherio, A. and Munger, K. L.: Environmental risk factors for
multiple sclerosis. Part II: Noninfectious factors, Ann. Neurol., 61, 504–513, 2007b.
Ascherio, A. and Munger, K. L.: EBV and Autoimmunity, Curr. Top. Microbiol.
Immunol., 390, 365–385, 2015.
Ascherio, A., Munger, K. L., and Lunemann, J. D.: The initiation and
prevention of multiple sclerosis, Nat. Rev. Neurol., 8, 602–612, 2012.
Barkhof, F., Simon, J. H., Fazekas, F., Rovaris, M., Kappos, L., de
Stefano, N., Polman, C. H., Petkau, J., Radue, E. W., Sormani, M. P., Li, D. K.,
O'Connor, P., Montalban, X., Miller, D. H., and Filippi, M.: MRI monitoring
of immunomodulation in relapse-onset multiple sclerosis trials, Nat. Rev.
Neurol., 8, 13–21, 2012.
Barun, B. and Bar-Or, A.: Treatment of multiple sclerosis with Anti-CD20 antibodies,
Clin. Immunol., 142, 31–37, 2012.
Billiau, A. and Matthys, P.: Modes of action of Freund's adjuvants
in experimental models of autoimmune diseases, J. Leukoc. Biol., 70, 849–860, 2001.
Boon, L., Brok, H. P., Bauer, J., Ortiz-Buijsse, A., Schellekens, M. M.,
Ramdien-Murli, S., Blezer, E., van Meurs, M., Ceuppens, J., de Boer, M.,
't Hart, B. A., and Lamanm, J. D.: Prevention of experimental autoimmune
encephalomyelitis in the common marmoset (Callithrix jacchus) using a chimeric antagonist
monoclonal antibody against human CD40 is associated with altered B cell
responses, J. Immunol., 167, 2942–2949, 2001.
Brok, H. P., Uccelli, A., Kerlero De Rosbo, N., Bontrop, R. E.,
Roccatagliata, L., de Groot, N. G., Capello, E., Laman, J. D., Nicolay, K.,
Mancardi, G. L., Ben-Nun, A., and 't Hart, B. A.: Myelin/oligodendrocyte
glycoprotein-induced autoimmune encephalomyelitis in common marmosets: the
encephalitogenic T cell epitope pMOG24-36 is presented by a monomorphic MHC
class II molecule, J. Immunol., 165, 1093–1101, 2000.
Brok, H. P., Hornby, R. J., Griffiths, G. D., Scott, L. A., and 't Hart, B. A.:
An extensive monoclonal antibody panel for the phenotyping of leukocyte subsets
in the common marmoset and the cotton-top tamarin, Cytometry, 45, 294–303, 2001.
Brok, H. P., Van Meurs, M., Blezer, E., Schantz, A., Peritt, D., Treacy, G.,
Laman, J. D., Bauer, J., and 't Hart, B.: Prevention of experimental
autoimmune encephalomyelitis in common marmosets using an anti-IL-12p40
monoclonal antibody, J. Immunol., 169, 6554–6563, 2002.
Brok, H. P., Boven, L., van Meurs, M., Kerlero de Rosbo, N.,
Celebi-Paul, L., Kap, Y. S., Jagessar, A., Hintzen, R. Q., Keir, G., Bajramovic,
J., Ben-Nun, A., Bauer, J., Laman, J. D., Amor, S., and 't Hart, B. A.: The
human CMV-UL86 peptide 981–1003 shares a crossreactive T-cell epitope with
the encephalitogenic MOG peptide 34–56, but lacks the capacity to induce EAE
in rhesus monkeys, J. Neuroimmunol., 182, 135–152, 2007.
Cho, Y., Ramer, J., Rivailler, P., Quink, C., Garber, R. L., Beier, D. R., and
Wang, F.: An Epstein-Barr-related herpesvirus from marmoset lymphomas,
P.Natl. Acad. Sci. USA, 98, 1224–1229, 2001.
Collins, B. E., Yang, L. J., Mukhopadhyay, G., Filbin, M. T., Kiso, M.,
Hasegawa, A., and Schnaar, R. L.: Sialic acid specificity of
myelin-associated glycoprotein binding, J. Biol. Chem., 272, 1248–1255, 1997.
Davies, L. R. and Varki, A.: Why Is N-Glycolylneuraminic Acid Rare
in the Vertebrate Brain?, Top Curr Chem., 366, 31–54, https://doi.org/10.1007/128_2013_419, 2013.
Davis, M. M.: A prescription for human immunology, Immunity, 29, 835–838, 2008.
Dendrou, C. A., Fugger, L., and Friese, M. A.: Immunopathology of
multiple sclerosis, Nat. Rev. Immunol., 15, 545–558, 2015.
de Vos, A. F., van Meurs, M., Brok, H. P., Boven, L. A., Hintzen, R. Q.,
van der Valk, P., Ravid, R., Rensing, S., Boon, L., 't Hart, B. A., and
Laman, J. D.: Transfer of central nervous system autoantigens and presentation in
secondary lymphoid organs, J. Immunol., 169, 5415–5423, 2002.
Dorner, T., Kinnman, N., and Tak, P. P.: Targeting B cells in
immune-mediated inflammatory disease: a comprehensive review of mechanisms
of action and identification of biomarkers, Pharmacol. Therapeut., 125, 464–475, 2010.
Dunham, J., Lee, L. F., van Driel, N., Laman, J. D., Ni, I., Zhai, W.,
Tu, G. H., Lin, J. C., Bauer, J., t Hart, B. A., and Kap, Y. S.: Blockade of
CD127 Exerts a Dichotomous Clinical Effect in Marmoset Experimental
Autoimmune Encephalomyelitis, J. Neuroim. Pharmacol., 1, 73–83, https://doi.org/10.1007/s11481-015-9629-6, 2016.
Garcia-Vallejo, J. J. and van Kooyk, Y.: Endogenous ligands for
C-type lectin receptors: the true regulators of immune homeostasis, Immunol.
Rev., 230, 22–37, 2009.
Garcia-Vallejo, J. J., Ilarregui, J. M., Kalay, H., Chamorro, S.,
Koning, N., Unger, W. W., Ambrosini, M., Montserrat, V., Fernandes, R. J.,
Bruijns, S. C., van Weering, J. R., Paauw, N. J., O'Toole, T., van Horssen, J., van
der Valk, P., Nazmi, K., Bolscher, J. G., Bajramovic, J., Dijkstra, C. D.,
't Hart, B. A., and van Kooyk, Y.: CNS myelin induces regulatory functions of
DC-SIGN-expressing, antigen-presenting cells via cognate interaction with
MOG, J. Exp. Med., 211, 1465–1483, 2014.
Genain, C. P., Nguyen, M. H., Letvin, N. L., Pearl, R., Davis, R. L.,
Adelman, M., Lees, M. B., Linington, C., and Hauser, S. L.: Antibody
facilitation of multiple sclerosis-like lesions in a nonhuman primate,
J. Clin. Invest., 96, 2966–2974, 1995.
Haig, D.: What is a marmoset?, Am. J. Primatol., 49, 285–296, 1999.
Jagessar, S. A., Smith, P. A., Blezer, E., Delarasse, C., Pham-Dinh, D.,
Laman, J. D., Bauer, J., Amor, S., and 't Hart, B.: Autoimmunity against
myelin oligodendrocyte glycoprotein is dispensable for the initiation
although essential for the progression of chronic encephalomyelitis in
common marmosets, J. Neuropathol. Exp. Neurol., 67, 326–340, 2008.
Jagessar, S. A., Kap, Y. S., Heijmans, N., van Driel, N., van Straalen, L.,
Bajramovic, J. J., Brok, H. P., Blezer, E. L., Bauer, J., Laman, J. D., and
't Hart, B. A.: Induction of progressive demyelinating autoimmune
encephalomyelitis in common marmoset monkeys using MOG34-56 peptide in
incomplete freund adjuvant, J. Neuropathol. Exp. Neurol., 69, 372–385, 2010.
Jagessar, S. A., Heijmans, N., Blezer, E. L., Bauer, J., Blokhuis, J. H.,
Wubben, J. A., Drijfhout, J. W., van den Elsen, P. J., Laman, J. D., and
't Hart, B. A.: Unravelling the T-cell-mediated autoimmune attack on CNS myelin
in a new primate EAE model induced with MOG34-56 peptide in incomplete
adjuvant, Eur. J. Immunol., 42, 217–227, 2012a.
Jagessar, S. A., Gran, B., Heijmans, N., Bauer, J., Laman, J. D.,
't Hart, B. A., and Constantinescu, C. S.: Discrepant effects of human
interferon-gamma on clinical and immunological disease parameters in a novel
marmoset model for multiple sclerosis, J. Neuroim. Pharmacol., 7, 253–265, 2012b.
Jagessar, S. A., Heijmans, N., Bauer, J., Blezer, E. L., Laman, J. D.,
Hellings, N., and 't Hart, B. A.: B-cell depletion abrogates
T cell-mediated demyelination in an antibody-nondependent common marmoset
experimental autoimmune encephalomyelitis model, J. Neuropathol. Exp. Neurol.,
71, 716–728, 2012c.
Jagessar, S. A., Heijmans, N., Oh, L., Bauer, J., Blezer, E. L.,
Laman, J. D., Migone, T. S., Devalaraja, M. N., and 't Hart, B. A.: Antibodies
against human BLyS and APRIL attenuate EAE development in marmoset monkeys,
J. Neuroim. Pharmacol., 7, 557–570, 2012d.
Jagessar, S. A., Vierboom, M., Blezer, E. L., Bauer, J., 't Hart, B. A., and
Kap, Y. S.: Overview of models, methods, and reagents developed for
translational autoimmunity research in the common marmoset (Callithrix
jacchus), Experimental animals/Japanese Association for Laboratory Animal
Science, 62, 159–171, 2013a.
Jagessar, S. A., Fagrouch, Z., Heijmans, N., Bauer, J., Laman, J. D., Oh, L.,
Migone, T., Verschoor, E. J., and 't Hart, B. A.: The different clinical
effects of anti-BLyS, anti-APRIL and anti-CD20 antibodies point at a
critical pathogenic role of gamma-herpesvirus infected B cells in the
marmoset EAE model, J. Neuroim. Pharmacol., 8, 727–738, 2013b.
Jagessar, S. A., Heijmans, N., Blezer, E. L., Bauer, J., Weissert, R., and
t Hart, B. A.: Immune profile of an atypical EAE model in marmoset
monkeys immunized with recombinant human myelin oligodendrocyte glycoprotein
in incomplete Freund's adjuvant, J. Neuroinflam., 12, 169–186, 2015.
Johns, T. G. and Bernard, C. C.: The structure and function of
myelin oligodendrocyte glycoprotein, J. Neurochem., 72, 1–9, 1999.
Kap, Y. S., Smith, P., Jagessar, S. A., Remarque, E., Blezer, E.,
Strijkers, G. J., Laman, J. D., Hintzen, R. Q., Bauer, J., Brok, H. P., and
t Hart, B. A.: Fast progression of recombinant human myelin/oligodendrocyte
glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis in
marmosets is associated with the activation of MOG34-56-specific cytotoxic
T cells, J. Immunol., 180, 1326–1337, 2008.
Kap, Y. S., van Driel, N., Blezer, E., Parren, P. W., Bleeker, W. K.,
Laman, J. D., Craigen, J. L., and 't Hart, B. A.: Late B cell depletion with a
human anti-human CD20 IgG1kappa monoclonal antibody halts the development of
experimental autoimmune encephalomyelitis in marmosets, J. Immunol., 185, 3990–4003, 2010.
Kap, Y. S., Jagessar, S. A., van Driel, N., Blezer, E., Bauer, J., van
Meurs, M., Smith, P., Laman, J. D., and t Hart, B. A.: Effects of early
IL-17A neutralization on disease induction in a primate model of
experimental autoimmune encephalomyelitis, J. Neuroim. Pharmacol., 6, 341–353, 2011a.
Kap, Y. S., Bauer, J., Driel, N. V., Bleeker, W. K., Parren, P. W.,
Kooi, E. J., Geurts, J. J., Laman, J. D., Craigen, J. L., Blezer, E., and
't Hart, B. A.: B-Cell Depletion Attenuates White and Gray Matter Pathology in
Marmoset Experimental Autoimmune Encephalomyelitis, J. Neuropathol. Exp. Neurol.,
70, 992–1005, 2011b.
Kap, Y. S., van Driel, N., Laman, J. D., Tak, P. P., and t Hart, B. A.:
CD20 + B Cell Depletion Alters T Cell Homing, J. Immunol., 192, 4242–4253, 2014.
Kappos, L., Hartung, H. P., Freedman, M. S., Boyko, A., Radu, E. W.,
Mikol, D. D., Lamarine, M., Hyvert, Y., Freudensprung, U., Plitz, T., van Beek, J., and
Group, A. S.: Atacicept in multiple sclerosis (ATAMS): a randomised,
placebo-controlled, double-blind, phase 2 trial, Lancet Neurol., 13, 353–363, 2014.
Kerlero de Rosbo, N. K. and Ben-Nun, A.: T-cell responses to
myelin antigens in multiple sclerosis; relevance of the predominant
autoimmune reactivity to myelin oligodendrocyte glycoprotein, J. Autoimmun., 11, 287–299, 1998.
Laman, J. D. and Weller, R. O.: Drainage of cells and soluble antigen from the
CNS to regional lymph nodes, J. Neuroim. Pharmacol., 8, 840–856, 2013.
Laman, J. D., Claassen, E., and Noelle, V: Functions of CD40 and
its ligand, gp39 (CD40L), Crit. Rev. Immunol., 16, 59–108, 1996.
Laman, J. D., 't Hart, B. A., Brok, H., Meurs, M., Schellekens, M. M.,
Kasran, A., Boon, L., Bauer, J., Boer, M., and Ceuppens, J.: Protection of
marmoset monkeys against EAE by treatment with a murine antibody blocking
CD40 (mu5D12), Eur. J. Immunol., 32, 2218–2228, 2002.
Lunemann, J. D. and Munz, C. EBV in MS: guilty by association?, Trends Immunol.,
30, 243–248, 2009.
Ma, S. D., Xu, X., Plowshay, J., Ranheim, E. A., Burlingham, W. J.,
Jensen, J. L., Asimakopoulos, F., Tang, W., Gulley, M. L., Cesarman, E., Gumperz,
J. E., and Kenney, S. C.: LMP1-deficient Epstein-Barr virus mutant requires T
cells for lymphomagenesis, J. Clin. Invest., 125, 304–315, 2015.
Mahad, D. H., Trapp, B. D., and Lassmann, H.: Pathological mechanisms in
progressive multiple sclerosis, Lancet Neurol., 14, 183–193, 2015.
Massacesi, L., Genain, C. P., Lee-Parritz, D., Letvin, N. L., Canfield, D.,
and Hauser, S. L.: Active and passively induced experimental autoimmune
encephalomyelitis in common marmosets: a new model for multiple sclerosis,
Ann. Neurol., 37, 519–530, 1995.
McFarland, H. I., Lobito, A. A., Johnson, M. M., Nyswaner, J. T.,
Frank, J. A., Palardy, G. R., Tresser, N., Genain, C. P., Mueller, J. P., Matis,
L. A., and Lenardo, M. J.: Determinant spreading associated with demyelination
in a nonhuman primate model of multiple sclerosis, J. Immunol., 162, 2384–2390, 1999.
Menge, T., von Budingen, H. C., Lalive, P. H., and Genain, C. P.:
Relevant antibody subsets against MOG recognize conformational epitopes
exclusively exposed in solid-phase ELISA, Eur. J. Immunol., 37, 3229–3239, 2007.
Nigida, S. M., Falk, L. A., Wolfe, L. G., and Deinhardt, F.: Isolation
of a cytomegalovirus from salivary glands of white-lipped marmosets
(Saguinus fuscicollis), Lab. Anim. Sci., 29, 53–60, 1979.
Noseworthy, J. H., Lucchinetti, C., Rodriguez, M., and Weinshenker, B. G.:
Multiple sclerosis, N. Engl. J. Med., 343, 938–952, 2000.
Pakpoor, J., Disanto, G., Gerber, J. E., Dobson, R., Meier, U. C.,
Giovannoni, G., and Ramagopalan, S. V.: The risk of developing multiple
sclerosis in individuals seronegative for Epstein-Barr virus: a
meta-analysis, Mult Scler., 19, 162–166, https://doi.org/10.1177/1352458512449682, 2012.
Pakpoor, J., Disanto, G., Gerber, J. E., Dobson, R., Meier, U. C.,
Giovannoni, G., and Ramagopalan, S. V.: The risk of developing multiple
sclerosis in individuals seronegative for Epstein-Barr virus: a
meta-analysis, Mult. Scler., 19, 162–166, 2013.
Panitch, H. S., Hirsch, R. L., Haley, A. S., and Johnson, K. P.:
Exacerbations of multiple sclerosis in patients treated with gamma
interferon, Lancet, 1, 893–895, 1987.
Phillips, M. J., Needham, M., and Weller, R. O.: Role of cervical
lymph nodes in autoimmune encephalomyelitis in the Lewis rat, J. Pathol.,
182, 457–464, 1997.
Picus, J., Aldrich, W. R., and Letvin, N. L.: A naturally occurring
bone-marrow-chimeric primate. I. Integrity of its immune system,
Transplantation, 39, 297–303, 1985.
Pietra, G., Romagnani, C., Mazzarino, P., Falco, M., Millo, E., Moretta, A.,
Moretta, L., and Mingari, M. C.: HLA-E-restricted recognition of
cytomegalovirus-derived peptides by human CD8 + cytolytic T
lymphocytes, P. Natl. Acad. Sci. USA, 100, 10896–10901, 2003.
Pomeroy, I. M., Matthews, P. M., Frank, J. A., Jordan, E. K., and
Esiri, M. M.: Demyelinated neocortical lesions in marmoset autoimmune
encephalomyelitis mimic those in multiple sclerosis, Brain, 128, 2713–2721, 2005.
Pomeroy, I. M., Jordan, E. K., Frank, J. A., Matthews, P. M., and
Esiri, M. M.: Diffuse cortical atrophy in a marmoset model of multiple
sclerosis, Neurosci. Lett., 437, 121–124, 2008.
Richez, C., Truchetet, M. E., Schaeverbeke, T., and Bannwarth, B.:
Atacicept as an investigated therapy for rheumatoid arthritis, Exp. Opin. Invest. Drugs,
23, 1285–1294, 2014.
Rodriguez, M. and Scheithauer, B.: Ultrastructure of multiple sclerosis,
Ultrastruct. Pathol., 18, 3–13, 1994.
Saab, A. S., Tzvetanova, I. D., and Nave, K. A.: The role of myelin
and oligodendrocytes in axonal energy metabolism, Curr. Opin. Neurobiol., 23, 1065–1072, 2013.
Samraj, A. N., Laubli, H., Varki, N., and Varki, A.: Involvement of a
non-human sialic Acid in human cancer, Front. Oncol., 4, 1–13, 2014.
Sanvito, L., Constantinescu, C. S., Gran, B., and 't Hart, B. A.: The
multifaceted role of interferon-γ in central nervous system
autoimmune demyelination, Open Autoim. J., 2, 151–159, 2010.
Sawcer, S., Hellenthal, G., Pirinen, M., et al.: Genetic risk and a primary role for
cell-mediated immune mechanisms in multiple sclerosis, Nature, 476, 214–219, 2011.
Schnaar, R. L.: Brain gangliosides in axon-myelin stability and axon regeneration,
FEBS Lett., 584, 1741–1747, 2010.
Schnaar, R. L., Gerardy-Schahn, R., and Hildebrandt, H.: Sialic
acids in the brain: gangliosides and polysialic acid in nervous system
development, stability, disease, and regeneration, Physiolog. Rev., 94, 461–518, 2014.
Segal, B. M., Constantinescu, C. S., Raychaudhuri, A., Kim, L.,
Fidelus-Gort, R., and Kasper, L. H.: Repeated subcutaneous injections of
IL12/23 p40 neutralising antibody, ustekinumab, in patients with
relapsing-remitting multiple sclerosis: a phase II, double-blind,
placebo-controlled, randomised, dose-ranging study, Lancet Neurol., 7, 796–804, 2008.
Simons, M., Misgeld, T., and Kerschensteiner, M.: A unified cell
biological perspective on axon-myelin injury, J. Cell Biol., 206, 335–345, 2014.
Singh, S., Metz, I., Amor, S., van der Valk, P., Stadelmann, C., and
Bruck, W.: Microglial nodules in early multiple sclerosis white matter are
associated with degenerating axons, Acta Neuropathol., 125, 595–608,
https://doi.org/10.1007/s00401-013-1082-0, 2013.
Smith, P. A., Heijmans, N., Ouwerling, B., Breij, E. C., Evans, N.,
van Noort, J. M., Plomp, A. C., Delarasse, C., t Hart, B., Pham-Dinh, D., and
Amor, S.: Native myelin oligodendrocyte glycoprotein promotes severe chronic
neurological disease and demyelination in Biozzi ABH mice, Eur. J. Immunol.,
35, 1311–1319, 2005.
Springer, S. A., Diaz, S. L., and Gagneux, P.: Parallel evolution of
a self-signal: humans and new world monkeys independently lost the cell
surface sugar Neu5Gc, Immunogenetics, 66, 671–674, 2014.
Stys, P. K., Zamponi, G. W., van Minnen, J., and Geurts, J. J.: Will
the real multiple sclerosis please stand up?, Nat. Rev. Neurosci., 13, 507–514, 2012.
Taylor, R. E., Gregg, C. J., Padler-Karavani, V., Ghaderi, D., Yu, H.,
Huang, S., Sorensen, R. U., Chen, X., Inostroza, J., Nizet, V., and Varki,
A.: Novel mechanism for the generation of human xeno-autoantibodies against the
nonhuman sialic acid N-glycolylneuraminic acid, J. Exp. Med., 207, 1637–1646, 2010.
't Hart, B. A.: Why does multiple sclerosis only affect human
primates?, Mult. Scler. J., 1352458515591862, 2015.
't Hart, B. A., Bauer, J., Muller, H. J., Melchers, B., Nicolay, K.,
Brok, H., Bontrop, R. E., Lassmann, H., and Massacesi, L.: Histopathological
characterization of magnetic resonance imaging – detectable brain white
matter lesions in a primate model of multiple sclerosis: a correlative study
in the experimental autoimmune encephalomyelitis model in common marmosets
(Callithrix jacchus), Am. J. Pathol., 153, 649–663, 1998.
't Hart, B. A., Laman, J. D., Bauer, J., Blezer, E. D., van Kooyk, Y., and
Hintzen, R. Q.: Modelling of multiple sclerosis: lessons learned in a
non-human primate, Lancet Neurol., 3, 589–597, 2004a.
't Hart, B. A., Vogels, J. T., Bauer, J., Brok, H. P. M., and Blezer, E.:
Non-invasive measurement of brain damage in a primate model of
multiple sclerosis, Trends Mol. Med., 10, 85–91, 2004b.
't Hart, B. A., Brok, H. P., Remarque, E., Benson, J., Treacy, G., Amor, S.,
Hintzen, R. Q., Laman, J. D., Bauer, J., and Blezer, E. L.: Suppression of
ongoing disease in a nonhuman primate model of multiple sclerosis by a
human-anti-human IL-12p40 antibody, J. Immunol., 175, 4761–4768, 2005.
't Hart, B. A., Smith, P., Amor, S., Strijkers, G. J., and Blezer, E. L.:
MRI-guided immunotherapy development for multiple sclerosis in a
primate, Drug Discov. Today, 11, 58–66, 2006.
't Hart, B. A., Hintzen, R. Q., and Laman, J. D.: Multiple sclerosis – a
response-to-damage model, Trends Mol. Med., 15, 235–244, 2009.
't Hart, B. A., Gran, B., and Weissert, R.: EAE: imperfect but
useful models of multiple sclerosis, Trends Mol. Med., 17, 119–125, 2011.
't Hart, B. A., Jagessar, S. A., Haanstra, K., Verschoor, E., Laman, J. D.,
and Kap, Y. S.: The Primate EAE Model Points at EBV-Infected B Cells as
a Preferential Therapy Target in Multiple Sclerosis, Front. Immunol., 4, 145,
https://doi.org/10.3389/fimmu.2013.00145, 2013.
't Hart, B. A., van Kooyk, Y., Geurts, J. J. G., and Gran, B.: The
primate autoimmune encephalomyelitis model; a bridge between mouse and man,
Ann. Clin. Transl. Neurol., 2, 581–593, 2015.
van der Valk, P. and Amor, S.: Preactive lesions in multiple sclerosis,
Curr. Opin. Neurol., 22, 207–213, 2009.
van Kooten, C. and Banchereau, J.: Functions of CD40 on B cells,
dendritic cells and other cells, Curr. Opin. Immunol., 9, 330–337, 1997.
van Oosten, B. W., Lai, M., Hodgkinson, S., Barkhof, F., Miller, D. H.,
Moseley, I. F., Thompson, A. J., Rudge, P., McDougall, A., McLeod, J. G.,
Ader, H. J., and Polman, C. H.: Treatment of multiple sclerosis with the
monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind,
placebo-controlled, MR-monitored phase II trial, Neurology, 49, 351–357, 1997.
van Zwam, M., Huizinga, R., Melief, M. J., Wierenga-Wolf, A. F., van
Meurs, M., Voerman, J. S., Biber, K. P., Boddeke, H. W., Hopken, U. E., Meisel,
C., Meisel, A., Bechmann, I., Hintzen, R. Q., t Hart, B. A., Amor, S., Laman,
J. D., and Boven, L. A.: Brain antigens in functionally distinct
antigen-presenting cell populations in cervical lymph nodes in MS and EAE.
J. Mol. Med., 87, 273–286, 2009a.
van Zwam, M., Huizinga, R., Heijmans, N., van Meurs, M.,
Wierenga-Wolf, A. F., Melief, M. J., Hintzen, R. Q., t Hart, B. A., Amor, S.,
Boven, L. A., and Laman, J. D.: Surgical excision of CNS-draining lymph nodes
reduces relapse severity in chronic-relapsing experimental autoimmune
encephalomyelitis, J. Pathol., 217, 543–551, 2009b.
Varki, A.: Loss of N-glycolylneuraminic acid in humans: Mechanisms,
consequences, and implications for hominid evolution, Am. J. Phys. Anthropol.,
33, 54–69, 2001.
Vierboom, M. P., Breedveld, E., Kondova, I., and t Hart, B. A.:
Collagen-induced arthritis in common marmosets: a new nonhuman primate model
for chronic arthritis, Arthritis Res. Ther., 12, R200, 2010.
Wang, B.: Sialic acid is an essential nutrient for brain
development and cognition, Ann. Rev. Nutr., 29, 177–222, 2009.
Wilkin, T.: Autoimmunity: attack, or defence? (The case for a
primary lesion theory), Autoimmunity, 3, 57–73, 1989.
Yamamura, T. and Miyake, S.: Diet, Gut Flora, and Multiple
Sclerosis: Current Research and Future Perspectives, in: Multiple Sclerosis
Immunology, edited by: Yamamura, T. and Gran, B., Springer Science + Business
Media, New York, 115–126, 2013.
Zaguia, F., Saikali, P., Ludwin, S., Newcombe, J., Beauseigle, D.,
McCrea, E., Duquette, P., Prat, A., Antel, J. P., and Arbour, N.: Cytotoxic
NKG2C + CD4 T cells target oligodendrocytes in multiple sclerosis,
J. Immunol., 190, 2510–2518, 2013.
Short summary
The increasing prevalence of chronic autoimmune inflammatory disorders (AIMIDs) in aging human populations creates a high unmet need for safe and effective medications. However, thus far the translation of pathogenic concepts developed in animal models into effective treatments for the patient has been notoriously difficult. The main reason is that currently used mouse-based animal models for the pipeline selection of promising new treatments were insufficiently predictive for clinical success.
The increasing prevalence of chronic autoimmune inflammatory disorders (AIMIDs) in aging human...