Articles | Volume 2, issue 1
https://doi.org/10.5194/pb-2-25-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/pb-2-25-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Early development of the nervous system of the eutherian Tupaia belangeri
W. Knabe
CORRESPONDING AUTHOR
Prosektur Anatomie, Westfälische Wilhelms-Universität, 48149 Münster, Germany
S. Washausen
Prosektur Anatomie, Westfälische Wilhelms-Universität, 48149 Münster, Germany
Related subject area
Anatomy and embryology
The ethmoidal region of the skull of Ptilocercus lowii (Ptilocercidae, Scandentia, Mammalia) – a contribution to the reconstruction of the cranial morphotype of primates
Pubertal and testicular development in the common marmoset (Callithrix jacchus) shows high individual variation
I. Ruf, S. Janßen, and U. Zeller
Primate Biol., 2, 89–110, https://doi.org/10.5194/pb-2-89-2015, https://doi.org/10.5194/pb-2-89-2015, 2015
Short summary
Short summary
For the first time internal structures of the nasal region were studied in different ontogenetic stages of selected species of tree shrews (Scandentia) based on histology and µCT. The observed morphology of the turbinal skeleton reveals important characters for future systematic analyses. The pattern of the interorbital septum, a bony plate that separates the orbits, and its relevance for the closely related Primates are discussed in terms of ontogeny and functional morphology.
S. Irfan, J. Wistuba, J. Ehmcke, M. Shahab, and S. Schlatt
Primate Biol., 2, 1–8, https://doi.org/10.5194/pb-2-1-2015, https://doi.org/10.5194/pb-2-1-2015, 2015
Cited articles
Abbott, C. J., McBrien, N. A., Grünert, U., and Pianta, M. J.: Relationship of the optical coherence tomography signal to underlying retinal histology in the tree shrew (Tupaia belangeri), Invest. Ophthalmol. Vis. Sci., 50, 414–423, https://doi.org/10.1167/iovs.07-1197, 2009.
Abbott, C. J., Grünert, U., Pianta, M. J., and McBrien, N. A.: Retinal thinning in tree shrews with induced high myopia: Optical coherence tomography and histological assessment, Vision. Res., 51, 376–385, https://doi.org/10.1016/j.visres.2010.12.005, 2011.
Ahn, A. H., Dziennis, S., Hawkes, R., and Herrup, K.: The cloning of zebrin II reveals its identity with aldolase C, Development, 120, 2081–2090, 1994.
Ahnelt, P. K. and Kolb, H.: The mammalian photoreceptor mosaic-adaptive design, Prog. Retin. Eye Res., 19, 711–777, https://doi.org/10.1016/S1350-9462(00)00012-4, 2000.
Ahuja, P., Caffé, A. R., Ahuja, S., Ekström, P., and van Veen, T.: Decreased glutathione transferase levels in rd1/rd1 mouse retina: Replenishment protects photoreceptors in retinal explants, Neuroscience, 131, 935–943, https://doi.org/10.1016/j.neuroscience.2004.11.012, 2005.
Almsherqi, Z. A., Landh, T., Kohlwein, S. D., and Deng, Y.: Cubic membranes: The missing dimension of cell membrane organization, Int. Rev. Cell Mol. Biol., 274, 275–342, https://doi.org/10.1016/S1937-6448(08)02006-6, 2009.
Almsherqi, Z., Margadant, F., and Deng, Y.: A look through "lens" cubic mitochondria, Interface Focus, 2, 539–545, https://doi.org/10.1098/rsfs.2011.0120, 2012.
Arnason, U. and Janke, A.: Mitogenomic analyses of eutherian relationships, Cytogenet. Genome Res., 96, 20–32, https://doi.org/10.1159/000063023, 2002.
Ashwell, K. W.: Development of the olfactory pathways in platypus and echidna, Brain Behav. Evol., 79, 45–56, https://doi.org/10.1159/000332804, 2012.
Ashwell, K. W., Marotte, L. R., and Cheng, G.: Development of the olfactory system in a wallaby (Macropus eugenii), Brain Behav. Evol., 71, 216–230, https://doi.org/10.1159/000119711, 2008.
Bastianelli, E., Polans, A. S., Hidaka, H., and Pochet, R.: Differential distribution of six calcium-binding proteins in the rat olfactory epithelium during postnatal development and adulthood, J. Comp. Neurol., 354, 395–409, https://doi.org/10.1002/cne.903540308, 1995.
Battle, C., Ott, C. M., Burnette, D. T., Lippincott-Schwartz, J., and Schmidt, C. F.: Intracellular and extracellular forces drive primary cilia movement, Proc. Natl. Acad. Sci. USA, 112, 1410–1415, https://doi.org/10.1073/pnas.1421845112, 2015.
Bejarano-Escobar, R., Blasco, M., Durán, A. C., Martín-Partido, G., and Francisco-Morcillo, J.: Chronotopographical distribution patterns of cell death and of lectin-positive macrophages/microglial cells during the visual system ontogeny of the small-spotted catshark Scyliorhinus canicula, J. Anat., 223, 171–184, https://doi.org/10.1111/joa.12071, 2013.
Berger, E. R.: On the mitochondrial origin of oil drops in the retinal double cone inner segments, J. Ultrastruct. Res., 14, 143–157, https://doi.org/10.1016/S0022-5320(66)80041-2, 1966.
Bischoff, A.: Die Ontogenese der primären Schädelseitenwand von Tupaia belangeri, Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1989.
Blanck, H.-G.: Die Entwicklung der Hypophyse von Tupaia belangeri (Tupaiidae, Scandentia, Mammalia), Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1983.
Borwein, B.: The retinal receptor: A description, in: Vertebrate photoreceptor optics, edited by: Enoch, J. M., Stiles, W. S., and Tobey Jr., F. L., Springer series in optical sciences, 23, Springer, Berlin, Germany, 11–81, 1981.
Bosco, A., Cusato, K., Nicchia, G. P., Frigeri, A., and Spray, D. C.: A developmental switch in the expression of aquaporin-4 and Kir4.1 from horizontal to Müller cells in mouse retina, Invest. Ophthalmol. Vis. Sci., 46, 3869–3875, https://doi.org/10.1167/iovs.05-0385, 2005.
Breau, M. A. and Schneider-Maunoury, S.: Mechanisms of cranial placode assembly, Int. J. Dev. Biol., 58, 9–19, https://doi.org/10.1387/ijdb.130351mb, 2014.
Brochu, G., Maler, L., and Hawkes, R.: Zebrin II: A polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum, J. Comp. Neurol., 291, 538–552, https://doi.org/10.1002/cne.902910405, 1990.
Brookover, C.: The nervus terminalis in adult man, J. Comp. Neurol., 24, 131–135, https://doi.org/10.1002/cne.900240203, 1914.
Brunnett, G., Vančo, M., Haller, C., Washausen, S., Kuhn, H.-J., and Knabe, W.: Visualization of cross sectional data for morphogenetic studies, in: Informatik 2003: Innovative Informatikanwendungen, Band 1, edited by: Dittrich, K. R., König, W., Oberweis, A., Rannenberg, K., and Wahlster, W., GI-Edition: Lecture notes in informatics, P-34, Köln, Bonn, Germany, 354–359, 2003.
Bussolati, G., Marchiò, C., and Volante, M.: Tissue arrays as fiducial markers for section alignment in 3-D reconstruction technology, J. Cell. Mol. Med., 9, 438–445, https://doi.org/10.1111/j.1582-4934.2005.tb00368.x, 2005.
Castro, A., Becerra, M., Anadón, R., and Manso, M. J.: Distribution and development of FMRFamide-like immunoreactive neuronal systems in the brain of the brown trout, Salmo trutta fario, J. Comp. Neurol., 440, 43–64, https://doi.org/10.1002/cne.1369, 2001.
Castro, A., Becerra, M., Manso, M. J., and Anadón, R.: Calretinin immunoreactivity in the brain of the zebrafish, Danio rerio: distribution and comparison with some neuropeptides and neurotransmitter-synthesizing enzymes. I. Olfactory organ and forebrain, J. Comp. Neurol., 494, 435–459, https://doi.org/10.1002/cne.20782, 2006.
Castro, A., Becerra, M., Anadón, R., and Manso, M. J.: Distribution of calretinin during development of the olfactory system in the brown trout, Salmo trutta fario: Comparison with other immunohistochemical markers, J. Chem. Neuroanat., 35, 306–316, https://doi.org/10.1016/j.jchemneu.2008.03.005, 2008.
Chung, S. H., Marzban, H., Croci, L., Consalez, G. G., and Hawkes, R.: Purkinje cell subtype specification in the cerebellar cortex: Early B-cell factor 2 acts to repress the zebrin II-positive Purkinje cell phenotype, Neuroscience, 153, 721–732, https://doi.org/10.1016/j.neuroscience.2008.01.090, 2008.
Collin, S. P., and Potter, I. C.: The ocular morphology of the southern hemisphere lamprey Mordacia mordax Richardson with special reference to a single class of photoreceptor and a retinal tapetum, Brain Behav. Evol., 55, 120–138, https://doi.org/10.1159/000006647, 2000.
Collin, S. P., Hart, N. S., Shand, J., and Potter, I. C.: Morphology and spectral absorption characteristics of retinal photoreceptors in the southern hemisphere lamprey (Geotria australis), Vis. Neurosci., 20, 119–130, https://doi.org/10.1017/S0952523803202030, 2003.
Croci, L., Chung, S. H., Masserdotti, G., Gianola, S., Bizzoca, A., Gennarini, G., Corradi, A., Rossi, F., Hawkes, R., and Consalez, G. G.: A key role for the HLH transcription factor EBF2$^COE2,O/E-3$ in Purkinje neuron migration and cerebellar cortical topography, Development, 133, 2719–2729, https://doi.org/10.1242/dev.02437, 2006.
Dawid, B.: Die Ontogenese der Chorda dorsalis von Tupaia belangeri (Tupaiidae, Scandentia, Mammalia), Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1989.
Dawid, E.: Die Ontogenese der Visceralbogenarterien von Tupaia belangeri (Tupaiidae, Scandentia, Mammalia), Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1989.
de Vries, E.: Note on the ganglion vomeronasale, K. Akad. van Wetenschappen te Amsterdam, 7, 704 pp., 1905.
Demilly, A., Reeber, S. L., Gebre, S. A., and Sillitoe, R. V.: Neurofilament heavy chain expression reveals a unique parasagittal stripe topography in the mouse cerebellum, Cerebellum, 10, 409–421, https://doi.org/10.1007/s12311-010-0156-y, 2011.
Dieterich, C. E.: Elektronenmikroskopische Untersuchungen über die Photoreceptoren und Receptorensynapsen bei reinen Stäbchen- und Zapfennetzhäuten, A. Graef. Arch. Klin. Ex., 174, 289–320, https://doi.org/10.1007/BF00406626, 1968.
Dieterich, C. E.: Die Feinstruktur der Photorezeptoren des Spitzhörnchens Tupaia glis, Verh. Anat. Ges., 63, 305–312, 1969.
Diez-Roux, G., Argilla, M., Makarenkova, H., Ko, K., and Lang, R. A.: Macrophages kill capillary cells in G1 phase of the cell cycle during programmed vascular regression, Development, 126, 2141–2147, 1999.
Dkhissi-Benyahya, O., Szél, A., Degrip, W. J., and Cooper, H. M.: Short and mid-wavelength cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus), J. Comp. Neurol., 438, 490–504, https://doi.org/10.1002/cne.1330, 2001.
Eckmiller, M. S.: Cone outer segment morphogenesis: Taper change and distal invaginations, J. Cell Biol., 105, 2267–2277, https://doi.org/10.1083/jcb.105.5.2267, 1987.
Eckmiller, M. S.: Distal invaginations and the renewal of cone outer segments in anuran and monkey retinas, Cell Tissue Res., 260, 19–28, https://doi.org/10.1007/BF00297486, 1990.
Eickhoff, S.: Die Ontogenese des Schultergürtels von Tupaia belangeri (Tupaiidae, Scandentia, Mammalia), Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1989.
Eickholt, B. J., Graham, A., Lumsden, A., and Wizenmann, A.: Rhombomere interactions control the segmental differentiation of hindbrain neurons, Mol. Cell. Neurosci., 18, 141–148, https://doi.org/10.1006/mcne.2001.1014, 2001.
Ellies, D. L., Church, V., Francis-West, P., and Lumsden, A.: The WNT antagonist cSFRP2 modulates programmed cell death in the developing hindbrain, Development, 127, 5285–5295, 2000.
Engelmann, R. and Peichl, L.: Unique distribution of somatostatin-immunoreactive cells in the retina of the tree shrew (Tupaia belangeri), Eur. J. Neurosci., 8, 220–228, https://doi.org/10.1111/j.1460-9568.1996.tb01183.x, 1996.
Ernstberger, T.: Beitrag zur Ontogenese und funktionellen Morphologie des Fußskelets der Tupaiidae: Vergleichende Untersuchungen an Tupaia und Ptilocercus (Mammalia: Scandentia), Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1994.
Famiglietti, E. V. and Sundquist, S. J.: Development of excitatory and inhibitory neurotransmitters in transitory cholinergic neurons, starburst amacrine cells, and GABAergic amacrine cells of rabbit retina, with implications for previsual and visual development of retinal ganglion cells, Vis. Neurosci., 27, 19–42, https://doi.org/10.1017/S0952523810000052, 2010.
Flamarique, I. N. and Hárosi, F. I.: Photoreceptors, visual pigments, and ellipsosomes in the killifish, Fundulus heteroclitus: A microspectrophotometric and histological study, Vis. Neurosci., 17, 403–420, 2000.
Foelix, R. F., Kretz, R., and Rager, G.: Structure and postnatal development of photoreceptors and their synapses in the retina of the tree shrew (Tupaia belangeri), Cell Tissue Res., 247, 287–297, https://doi.org/10.1007/BF00218310, 1987.
Frade, J. M. and Barde, Y. A.: Microglia-derived nerve growth factor causes cell death in the developing retina, Neuron, 20, 35–41, https://doi.org/10.1016/S0896-6273(00)80432-8, 1998.
Francisco-Morcillo, J., Bejarano-Escobar, R., Rodríguez-León, J., Navascués, J., and Martín-Partido, G.: Ontogenetic cell death and phagocytosis in the visual system of vertebrates, Dev. Dyn., 243, 1203–1225, https://doi.org/10.1002/dvdy.24174, 2014.
Fujita, H., Oh-Nishi, A., Obayashi, S., and Sugihara, I.: Organization of the marmoset cerebellum in three-dimensional space: Lobulation, aldolase C compartmentalization and axonal projection, J. Comp. Neurol., 518, 1764–1791, https://doi.org/10.1002/cne.22301, 2010.
Fujita, H., Aoki, H., Ajioka, I., Yamazaki, M., Abe, M., Oh-Nishi, A., Sakimura, K., and Sugihara, I.: Detailed expression pattern of aldolase C (Aldoc) in the cerebellum, retina and other areas of the CNS studied in Aldoc-Venus knock-in mice, PLoS One, 9, e86679, https://doi.org/10.1371/journal.pone.0086679, 2014.
Funke, C.: Die Entwicklung der Arterien der unteren Extremität bei Tupaia belangeri (Tupaiidae, Scandentia, Mammalia), Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1995.
Funke, C. and Kuhn, H.-J.: The morphogenesis of the arteries of the pelvic extremity: A comparative study of mammals with special reference to the tree shrew Tupaia belangeri (Tupaiidae, Scandentia, Mammalia), edited by: Beck, F., Brown, D., Christ, B., Kriz, W., Marani, E., Putz, R., Sano, Y., Schiebler, T. H., and Zilles, K., Springer, Berlin, Germany, Adv. Anat. Embryol. Cell Biol., 144, 97 pp., 1998.
Gakovic, M., Shu, X., Kasioulis, I., Carpanini, S., Moraga, I., and Wright, A. F.: The role of RPGR in cilia formation and actin stability, Hum. Mol. Genet., 20, 4840–4850, https://doi.org/10.1093/hmg/ddr423, 2011.
García-Porrero, J. A., Colvée, E., and Ojeda, J. L.: Cell death in the dorsal part of the chick optic cup. Evidence for a new necrotic area, J. Embryol. Exp. Morphol., 80, 241–249, 1984.
Garrett, E. C., Dennis, J. C., Bhatnagar, K. P., Durham, E. L., Burrows, A. M., Bonar, C. J., Steckler, N. K., Morrison, E. E., and Smith, T. D.: The vomeronasal complex of nocturnal strepsirhines and implications for the ancestral condition in primates, Anat. Rec. (Hoboken), 296, 1881–1894, https://doi.org/10.1002/ar.22828, 2013.
Gastinger, M. J., Singh, R. S., and Barber, A. J.: Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2$^Akita$-diabetic mouse retinas, Invest. Ophthalmol. Vis. Sci., 47, 3143–3150, https://doi.org/10.1167/iovs.05-1376, 2006.
Germer, A., Schuck, J., Wolburg, H., Kuhrt, H., Mack, A. F., and Reichenbach, A.: Distribution of mitochondria within Müller cells – II. Post-natal development of the rabbit retinal periphery in vivo and in vitro: Dependence on oxygen supply, J. Neurocytol., 27, 347–359, https://doi.org/10.1023/A:1006938825474, 1998.
Gerneke, D. A., Sands, G. B., Ganesalingam, R., Joshi, P., Caldwell, B. J., Smaill, B. H., and Legrice, I. J.: Surface imaging microscopy using an ultramiller for large volume 3-D reconstruction of wax- and resin-embedded tissues, Microsc. Res. Tech., 70, 886–894, https://doi.org/10.1002/jemt.20491, 2007.
Golden, J. A., Bracilovic, A., McFadden, K. A., Beesley, J. S., Rubenstein, J. L., and Grinspan, J. B.: Ectopic bone morphogenetic proteins 5 and 4 in the chicken forebrain lead to cyclopia and holoprosencephaly, Proc. Natl. Acad. Sci. USA, 96, 2439–2444, https://doi.org/10.1073/pnas.96.5.2439, 1999.
Graham, A., Heyman, I., and Lumsden, A.: Even-numbered rhombomeres control the apoptotic elimination of neural crest cells from odd-numbered rhombomeres in the chick hindbrain, Development, 119, 233–245, 1993.
Graham, A., Francis-West, P., Brickell, P., and Lumsden, A.: The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest, Nature, 372, 684–686, https://doi.org/10.1038/372684a0, 1994.
Hailman, J. P.: Oildroplets in the eyes of adult anuran amphibians: A comparative survey, J. Morphol., 148, 453–468, https://doi.org/10.1002/jmor.1051480404, 1976.
Halpern, M. and Martínez-Marcos, A.: Structure and function of the vomeronasal system: an update, Prog. Neurobiol., 70, 245–318, https://doi.org/10.1016/S0301-0082(03)00103-5, 2003.
Hardisty, M. W.: Lampreys and hagfishes: Analysis of cyclostome relationships, in: The biology of lampreys, edited by: Hardisty, M. W. and Potter, I. C., Academic Press, London, UK, 85–125, 1982.
Harman, A. M. and Jeffery, G.: Development of the chiasm of a marsupial, the quokka wallaby, J. Comp. Neurol., 359, 507–521, https://doi.org/10.1002/cne.903590311, 1995.
Hárosi, F. I. and Novales Flamarique, I.: Functional significance of the taper of vertebrate cone photoreceptors, J. Gen. Physiol., 139, 159–187, https://doi.org/10.1085/jgp.201110692, 2012.
Hawkes, R. and Leclerc, N.: Purkinje cell axon collateral distributions reflect the chemical compartmentation of the rat cerebellar cortex, Brain Res., 476, 279–290, https://doi.org/10.1016/0006-8993(89)91248-1, 1989.
Heizmann, C. W. and Braun, K.: Changes in Ca2+-binding proteins in human neurodegenerative disorders, Trends Neurosci., 15, 259–264, https://doi.org/10.1016/0166-2236(92)90067-I, 1992.
Herrmann, U.: Frühentwicklung (Befruchtung und Furchung) bei Tupaia belangeri, Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1982.
Hoang, Q. V., Linsenmeier, R. A., Chung, C. K., and Curcio, C. A.: Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation, Vis. Neurosci., 19, 395–407, https://doi.org/10.1017/S0952523802194028, 2002.
Holcman, D. and Korenbrot, J. I.: Longitudinal diffusion in retinal rod and cone outer segment cytoplasm: the consequence of cell structure, Biophys. J., 86, 2566–2582, https://doi.org/10.1016/S0006-3495(04)74312-X, 2004.
Hopkins, J., Fowler, R., Krishna, S., Wilson, I., Mitchell, G., and Bannister, L.: The plastid in Plasmodium falciparum asexual blood stages: A three-dimensional ultrastructural analysis, Protist, 150, 283–295, https://doi.org/10.1016/S1434-4610(99)70030-1, 1999.
Immel, J. H. and Fisher, S. K.: Cone photoreceptor shedding in the tree shrew (Tupaia belangeri), Cell Tissue Res., 239, 667–675, https://doi.org/10.1007/BF00219247, 1985.
Insinna, C. and Besharse, J. C.: Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors, Dev. Dyn., 237, 1982–1992, https://doi.org/10.1002/dvdy.21554, 2008.
Ishikawa, T. and Yamada, E.: Atypical mitochondria in the ellipsoid of the photoreceptor cells of vertebrate retinas, Invest. Ophthalmol., 8, 302–316, 1969.
Iwaniuk, A. N., Marzban, H., Pakan, J. M., Watanabe, M., Hawkes, R., and Wylie, D. R.: Compartmentation of the cerebellar cortex of hummingbirds (Aves: Trochilidae) revealed by the expression of zebrin II and phospholipase Cβ4, J. Chem. Neuroanat., 37, 55–63, https://doi.org/10.1016/j.jchemneu.2008.10.001, 2009.
Janečka, J., Miller, W., Pringle, T., Wiens, F., Zitzmann, A., Helgen, K., Springer, M., and Murphy, W.: Molecular and genomic data identify the closest living relative of primates, Science, 318, 792–794, https://doi.org/10.1126/science.1147555, 2007.
Jeffery, G. and Erskine, L.: Variations in the architecture and development of the vertebrate optic chiasm, Prog. Retin. Eye Res., 24, 721–753, https://doi.org/10.1016/j.preteyeres.2005.04.005, 2005.
Jeffery, G., Harman, A., and Flügge, G.: First evidence of diversity in eutherian chiasmatic architecture: Tree shrews, like marsupials, have spatially segregated crossed and uncrossed chiasmatic pathways, J. Comp. Neurol., 390, 183–193, https://doi.org/10.1002/(SICI)1096-9861(19980112)390:2<183::AID-CNE2>3.0.CO;2-Y, 1998.
Jeffery, G., Levitt, J. B., and Cooper, H. M.: Segregated hemispheric pathways through the optic chiasm distinguish primates from rodents, Neuroscience, 157, 637–643, https://doi.org/10.1016/j.neuroscience.2008.09.021, 2008.
Jeffs, P., Jaques, K., and Osmond, M.: Cell death in cranial neural crest development, Anat. Embryol., 185, 583–588, https://doi.org/10.1007/BF00185617, 1992.
Jerxsen, R.: Ontogenese des Gebisses von Tupaia belangeri, Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1982.
Jia, C. and Halpern, M.: Calbindin D28K immunoreactive neurons in vomeronasal organ and their projections to the accessory olfactory bulb in the rat, Brain Res., 977, 261–269, https://doi.org/10.1016/S0006-8993(03)02693-3, 2003.
Jia, C. and Halpern, M.: Calbindin D28k, parvalbumin, and calretinin immunoreactivity in the main and accessory olfactory bulbs of the gray short-tailed opossum, Monodelphis domestica, J. Morphol., 259, 271–280, https://doi.org/10.1002/jmor.10166, 2004.
Jirkovská, M., Náprstková, I., Janácek, J., Kucera, T., Macásek, J., Karen, P., and Kubínová, L.: Three-dimensional reconstructions from non-deparaffinized tissue sections, Anat. Embryol., 210, 163–173, https://doi.org/10.1007/s00429-005-0006-8, 2005.
Joffe, B., Peichl, L., Hendrickson, A., Leonhardt, H., and Solovei, I.: Diurnality and nocturnality in primates: An analysis from the rod photoreceptor nuclei perspective, Evol. Biol., 41, 1–11, https://doi.org/10.1007/s11692-013-9240-9, 2014.
Johnston, J. B.: The nervus terminalis in man and mammals, Anat. Rec., 8, 185–198, https://doi.org/10.1002/ar.1090080402, 1914.
Källén, B.: Degeneration and regeneration in the vertebrate central nervous system during embryogenesis, Prog. Brain Res., 14, 77–96, https://doi.org/10.1016/S0079-6123(08)63740-1, 1965.
Kakuta, S., Oda, S., Gotoh, Y., and Kishi, K.: Calbindin-D28k and calretinin immunoreactive neurons in the olfactory bulb of the musk shrew, Suncus murinus, Brain Res. Dev. Brain Res., 129, 11–25, https://doi.org/10.1016/S0169-328X(01)00111-5, 2001.
Kern, T. S. and Barber, A. J.: Retinal ganglion cells in diabetes, J. Physiol., 586, 4401–4408, https://doi.org/10.1113/jphysiol.2008.156695, 2008.
Kienel, E., Vančo, M., Brunnett, G., Kowalski, T., Clauß, R., and Knabe, W.: A framework for the visualization of cross sectional data in biomedical research, in: Visualization in medicine and life sciences, edited by: Linsen, L., Hagen, H., and Hamann, B., Mathematics and visualization Springer, Berlin, Germany, 77–97, 2008.
Kim, J., Lee, E., Chang, B. S., Oh, C. S., Mun, G. H., Chung, Y. H., and Shin, D. H.: The presence of megamitochondria in the ellipsoid of photoreceptor inner segment of the zebrafish retina, Anat. Histol. Embryol., 34, 339–342, https://doi.org/10.1111/j.1439-0264.2005.00612.x, 2005.
Kim, J. Y., Marzban, H., Chung, S. H., Watanabe, M., Eisenman, L. M., and Hawkes, R.: Purkinje cell compartmentation of the cerebellum of microchiropteran bats, J. Comp. Neurol., 517, 193–209, https://doi.org/10.1002/cne.22147, 2009.
Kim, Y. K., Kim, J. H., Yu, Y. S., and Ko, H. W.: Localization of primary cilia in mouse retina, Acta Histochem., 115, 789–794, https://doi.org/10.1016/j.acthis.2013.03.005, 2013.
Kimura, Y. and Furukawa, M.: Calretinin immunoreactivity in olfactory bulb and mucosa in mice, Nihon Jibiinkoka Gakkai Kaiho, 101, 620–626, 1998.
Kinzinger, J. H., Johnson, E. W., Bhatnagar, K. P., Bonar, C. J., Burrows, A. M., Mooney, M. P., Siegel, M. I., and Smith, T. D.: Comparative study of lectin reactivity in the vomeronasal organ of human and nonhuman primates, Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 284, 550–560, https://doi.org/10.1002/ar.a.20194, 2005.
Klammler, M.: Die Ontogenese der Vena cardinalis posterior bei Tupaia belangeri unter besonderer Berücksichtigung der frühen Stadien, Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1990.
Kloc, M., Bilinski, S., Dougherty, M. T., Brey, E. M., and Etkin, L. D.: Formation, architecture and polarity of female germline cyst in Xenopus, Dev. Biol., 266, 43–61, https://doi.org/10.1016/j.ydbio.2003.10.002, 2004.
Knabe, W.: Die Morphogenese der Megamitochondrien in den Zapfen von Tupaia belangeri (Tupaiidae, Scandentia, Mammalia), Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1995.
Knabe, W. and Kuhn, H.-J.: Morphogenesis of megamitochondria in the retinal cone inner segments of Tupaia belangeri (Scandentia), Cell Tissue Res., 285, 1–9, https://doi.org/10.1007/s004410050614, 1996a.
Knabe, W. and Kuhn, H.-J.: The role of microtubules and microtubule-organising centres during the migration of mitochondria, J. Anat., 189, 383–391, 1996b.
Knabe, W. and Kuhn, H.-J.: Ciliogenesis in photoreceptor cells of the tree shrew retina, Anat. Embryol., 196, 123–131, https://doi.org/10.1007/s004290050085, 1997.
Knabe, W. and Kuhn, H.-J.: Disk formation in retinal cones of Tupaia belangeri (Scandentia), Cell Tissue Res., 292, 67–76, https://doi.org/10.1007/s004410051035, 1998a.
Knabe, W. and Kuhn, H.-J.: Pattern of cell death during optic cup formation in the tree shrew Tupaia belangeri, J. Comp. Neurol., 401, 352–366, https://doi.org/10.1002/(SICI)1096-9861(19981123)401:3<352::AID-CNE4>3.0.CO;2-A, 1998b.
Knabe, W. and Kuhn, H.-J.: The earliest invasion of macrophages into the developing brain and eye of the tree shrew Tupaia belangeri, Anat. Embryol., 200, 393–402, https://doi.org/10.1007/s004290050288, 1999.
Knabe, W. and Kuhn, H.-J.: Capillary-contacting horizontal cells in the retina of the tree shrew Tupaia belangeri belong to the mammalian type A, Cell Tissue Res., 299, 307–311, https://doi.org/10.1007/s004419900151, 2000.
Knabe, W. and Ochs, M.: Horizontal cells invest retinal capillaries in the tree shrew Tupaia belangeri, Cell Tissue Res., 298, 33–43, https://doi.org/10.1007/s004419900072, 1999.
Knabe, W., Skatchkov, S., and Kuhn, H.-J.: "Lens mitochondria" in the retinal cones of the tree-shrew Tupaia belangeri, Vision Res, 37, 267–271, https://doi.org/10.1016/S0042-6989(96)00199-X, 1997.
Knabe, W., Süss, M., and Kuhn, H.-J.: The patterns of cell death and of macrophages in the developing forebrain of the tree shrew Tupaia belangeri, Anat. Embryol., 201, 157–168, https://doi.org/10.1007/PL00008237, 2000.
Knabe, W., Washausen, S., Brunnett, G., and Kuhn, H.-J.: Use of "reference series" to realign histological serial sections for three-dimensional reconstructions of the positions of cellular events in the developing brain, J. Neurosci. Methods, 121, 169–180, https://doi.org/10.1016/S0165-0270(02)00247-9, 2002.
Knabe, W., Knerlich, F., Washausen, S., Kietzmann, T., Sirén, A. L., Brunnett, G., Kuhn, H.-J., and Ehrenreich, H.: Expression patterns of erythropoietin and its receptor in the developing midbrain, Anat. Embryol., 207, 503–512, https://doi.org/10.1007/s00429-003-0365-y, 2004a.
Knabe, W., Washausen, S., Brunnett, G., and Kuhn, H.-J.: Rhombomere-specific patterns of apoptosis in the tree shrew Tupaia belangeri, Cell Tissue Res., 316, 1–13, https://doi.org/10.1007/s00441-004-0855-0, 2004b.
Knabe, W., Washausen, S., Happel, N., and Kuhn, H.-J.: Development of starburst cholinergic amacrine cells in the retina of Tupaia belangeri, J. Comp. Neurol., 502, 584–597, https://doi.org/10.1002/cne.21324, 2007.
Knabe, W., Washausen, S., Happel, N., and Kuhn, H.-J.: Diversity in mammalian chiasmatic architecture: Ipsilateral axons are deflected at glial arches in the prechiasmatic optic nerve of the eutherian Tupaia belangeri, J. Comp. Neurol., 508, 437–457, https://doi.org/10.1002/cne.21694, 2008.
Knabe, W., Obermayer, B., Kuhn, H.-J., Brunnett, G., and Washausen, S.: Apoptosis and proliferation in the trigeminal placode, Brain Struct. Funct., 214, 49–65, https://doi.org/10.1007/s00429-009-0228-2, 2009.
Kong, S., Du, X., Peng, C., Wu, Y., Li, H., Jin, X., Hou, L., Deng, K., Xu, T., and Tao, W.: Dlic1 deficiency impairs ciliogenesis of photoreceptors by destabilizing dynein, Cell Res., 23, 835–850, https://doi.org/10.1038/cr.2013.59, 2013.
Köpsel, H.-J.: Die Tuba uterina von Tupaia belangeri. Makroskopische und mikroskopische Anatomie. Veränderungen während der Gravidität, Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1988.
Kosaka, K. and Kosaka, T.: Organization of the main olfactory bulbs of some mammals: Musk shrews, moles, hedgehogs, tree shrews, bats, mice, and rats, J. Comp. Neurol., 472, 1–12, https://doi.org/10.1002/cne.20004, 2004.
Kriesell, W.: Das Ovar von Tupaia, Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1977.
Kühne, J.-H.: Rod receptors in the retina of Tupaia belangeri, Anat. Embryol., 167, 95–102, https://doi.org/10.1007/BF00304603, 1983.
Kuhn, H.-J. and Liebherr, G.: The early development of the heart of Tupaia belangeri, with reference to other mammals., Anat. Embryol., 176, 53–63, https://doi.org/10.1007/BF00309752, 1987.
Kuhn, H.-J. and Liebherr, G.: The early development of the epicardium in Tupaia belangeri, Anatomy and Embryology, 177, 225–234, https://doi.org/10.1007/BF00321133, 1988.
Kuhn, H.-J. and Schwaier, A.: Implantation, early placentation, and the chronology of embryogenesis in Tupaia belangeri, Z. Anat. Entwicklungsgesch., 142, 315–340, https://doi.org/10.1007/BF00519135, 1973.
Kuhn, H.-J. and Starck, D.: Die Tupaia-Zucht des Dr. Senckenbergischen Anatomischen Institutes, Nat. Mus., 96, 263–271, 1966.
Kunz, Y. W. and Regan, C.: Histochemical investigations into the lipid nature of the oil-droplet in the retinal twin-cones of Lebistes reticulatus (Peters), Rev. Suisse Zool., 80, 699–703, 1973.
Kunz, Y. W. and Wise, C.: Structural differences of cone "oil-droplets" in the light and dark adapted retina of Poecilia reticulata P., Experientia, 34, 246–249, https://doi.org/10.1007/BF01944706, 1978.
Kurz, H., Korn, J., Eggli, P. S., Huang, R., and Christ, B.: Embryonic central nervous system angiogenesis does not involve blood-borne endothelial progenitors, J. Comp. Neurol., 436, 263–274, https://doi.org/10.1002/cne.1066, 2001.
Larsell, O.: The nervus terminalis, Ann. Otol. Rhinol. Laryngol., 59, 414–438, https://doi.org/10.1177/000348945005900211, 1950.
Lee, V. M., Sechrist, J. W., Luetolf, S., and Bronner-Fraser, M.: Both neural crest and placode contribute to the ciliary ganglion and oculomotor nerve, Dev. Biol., 263, 176–190, https://doi.org/10.1016/j.ydbio.2003.07.004, 2003.
Levi, G., Puche, A. C., Mantero, S., Barbieri, O., Trombino, S., Paleari, L., Egeo, A., and Merlo, G. R.: The Dlx5 homeodomain gene is essential for olfactory development and connectivity in the mouse, Mol. Cell. Neurosci., 22, 530–543, https://doi.org/10.1016/S1044-7431(02)00041-6, 2003.
Li, Y., Liu, T., Duan, W., Song, X., Shi, G., Zhang, J., Deng, X., Zhang, S., and Hou, X.: Instability in mitochondrial membranes in Polima cytoplasmic male sterility of Brassica rapa ssp. chinensis, Funct. Integr. Genomics, 14, 441–451, https://doi.org/10.1007/s10142-014-0368-1, 2014.
Liebherr, G.: Die Ontogenese des Venensystems der Leber von Tupaia belangeri (Tupaiidae, Scandentia, Mammalia), Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1983.
Liu, C. H., Wang, I. J., Wei, F. D., and Chien, C. L.: Neuronal intermediate filament α-internexin is expressed by neuronal lineages in the developing chicken retina, Exp. Eye Res., 110, 18–25, https://doi.org/10.1016/j.exer.2013.02.013, 2013.
Lluch, S., López-Fuster, M. J., and Ventura, J.: Giant mitochondria in the retina cone inner segments of shrews of genus Sorex (Insectivora, Soricidae), Anat. Rec. A Discov. Mol. Cell Evol. Biol., 272, 484–490, https://doi.org/10.1002/ar.a.10066, 2003.
Lluch, S., López-Fuster, M. J., and Ventura, J.: Cornea, retina, and lens morphology in five Soricidae species (Soricomorpha: Mammalia), Anat. Sci. Int., 84, 312–322, https://doi.org/10.1007/s12565-009-0042-1, 2009.
Lumsden, A. and Keynes, R.: Segmental patterns of neuronal development in the chick hindbrain, Nature, 337, 424–428, https://doi.org/10.1038/337424a0, 1989.
Lumsden, A., Sprawson, N., and Graham, A.: Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo, Development, 113, 1281–1291, 1991.
Ma, B., Lin, Z., Winkelbach, S., Lindenmaier, W., and Dittmar, K. E.: Automatic registration of serial sections of mouse lymph node by using Image-Reg, Micron, 39, 387–396, https://doi.org/10.1016/j.micron.2007.03.005, 2008a.
Ma, B., Wang, L., von Wasielewski, R., Lindenmaier, W., and Dittmar, K. E.: Serial sectioning and three-dimensional reconstruction of mouse Peyer's patch, Micron, 39, 967–975, https://doi.org/10.1016/j.micron.2007.10.007, 2008b.
Maas, J.-H.: Die Morphogenese des Sinus venosus von Tupaia belangeri, Diploma thesis, Department of Morphology, University of Göttingen, Germany, 1992.
MacLaren, R. E.: A glial palisade delineates the ipsilateral optic projection in Monodelphis, Vis. Neurosci., 15, 397–400, 1998.
MacNichol Jr., E. F., Kunz, Y. W., Levine, J. S., Hárosi, F. I., and Collins, B. A.: Ellipsosomes: Organelles containing a cytochrome-like pigment in the retinal cones of certain fishes, Science, 200, 549–552, https://doi.org/10.1126/science.644317, 1978.
Malz, C. R. and Kuhn, H.-J.: FMRFamide immunoreactivity and the invasion of adenohypophyseal cells into the neural lobe in the developing pituitary of the tree shrew Tupaia belangeri, Brain Res, 834, 83–88, https://doi.org/10.1016/S0006-8993(99)01555-3, 1999.
Malz, C. R. and Kuhn, H.-J.: Calretinin and FMRFamide immunoreactivity in the nervus terminalis of prenatal tree shrews (Tupaia belangeri), Brain Res. Dev. Brain Res., 135, 39–44, https://doi.org/10.1016/S0165-3806(02)00299-7, 2002.
Malz, C. R., Schwartz, P., and Kuhn, H.-J.: Lectin binding sites in the vomeronasal organ and the olfactory epithelium of the tree shrew Tupaia belangeri, J. Hirnforsch., 39, 481–487, 1999.
Malz, C. R., Knabe, W., and Kuhn, H.-J.: Pattern of calretinin immunoreactivity in the main olfactory system and the vomeronasal system of the tree shrew, Tupaia belangeri, J. Comp. Neurol., 420, 428–436, https://doi.org/10.1002/(SICI)1096-9861(20000515)420:4<428::AID-CNE2>3.0.CO;2-2, 2000.
Malz, C. R., Knabe, W., and Kuhn, H.-J.: Calretinin immunoreactivity in the prenatally developing olfactory systems of the tree shrew Tupaia belangeri, Anat. Embryol., 205, 83–97, https://doi.org/10.1007/s00429-002-0244-y, 2002.
Marzban, H., Chung, S. H., Pezhouh, M. K., Feirabend, H., Watanabe, M., Voogd, J., and Hawkes, R.: Antigenic compartmentation of the cerebellar cortex in the chicken (Gallus domesticus), J. Comp. Neurol., 518, 2221–2239, https://doi.org/10.1002/cne.22328, 2010.
Marzban, H. and Hawkes, R.: On the architecture of the posterior zone of the cerebellum, Cerebellum, 10, 422–434, https://doi.org/10.1007/s12311-010-0208-3, 2011.
Marzban, H., Hoy, N., Marotte, L. R., and Hawkes, R.: Antigenic compartmentation of the cerebellar cortex in an Australian marsupial, the tammar wallaby Macropus eugenii, Brain. Behav. Evol., 80, 196–209, https://doi.org/10.1159/000340069, 2012.
Matsumoto, S., Kuhn, H.-J., Vogt, B., and Gerke, M.: Embryological development of the arterial system of the forelimb in Tupaia, Anat. Rec., 240, 416–422, https://doi.org/10.1002/ar.1092400314, 1994.
McIntyre, P. and Pask, C.: The Stiles–Crawford effect: A theoretical revisit, J. Mod. Opt., 60, 266–283, https://doi.org/10.1080/09500340.2013.770575, 2013.
Mojumder, D. K.: Capillary-contacting horizontal cells in the rodent retina, J. Anat. Soc. India, 57, 34–36, 2008.
Morona, R. and González, A.: Calbindin-D28k and calretinin expression in the forebrain of anuran and urodele amphibians: Further support for newly identified subdivisions, J. Comp. Neurol., 511, 187–220, https://doi.org/10.1002/cne.21832, 2008.
Morona, R., López, J. M., and González, A.: Localization of calbindin-D28k and calretinin in the brain of Dermophis mexicanus (amphibia: gymnophiona) and its bearing on the interpretation of newly recognized neuroanatomical regions, Brain Behav. Evol., 77, 231–269, https://doi.org/10.1159/000329521, 2011.
Müller, F. and O'Rahilly, R.: The initial appearance of the cranial nerves and related neuronal migration in staged human embryos, Cells Tissues Organs, 193, 215–238, 10.1159/000320026, 2011.
Müller, B. and Peichl, L.: Topography of cones and rods in the tree shrew retina, J. Comp. Neurol., 282, 581–594, https://doi.org/10.1002/cne.902820409, 1989.
Müller, B. and Peichl, L.: Morphology and distribution of catecholaminergic amacrine cells in the cone-dominated tree shrew retina, J. Comp. Neurol., 308, 91–102, https://doi.org/10.1002/cne.903080109, 1991a.
Müller, B. and Peichl, L.: Rod bipolar cells in the cone-dominated retina of the tree shrew Tupaia belangeri, Vis. Neurosci., 6, 629–639, https://doi.org/10.1017/S0952523800002625, 1991b.
Navascués, J., Martín-Partido, G., Alvarez, I. S., and Rodríguez-Gallardo, L.: Cell death in suboptic necrotic centers of chick embryo diencephalon and their topographic relationship with the earliest optic fiber fascicles, J. Comp. Neurol., 278, 34–46, https://doi.org/10.1002/cne.902780103, 1988.
Neveu, M. M., Holder, G. E., Ragge, N. K., Sloper, J. J., Collin, J. R., and Jeffery, G.: Early midline interactions are important in mouse optic chiasm formation but are not critical in man: A significant distinction between man and mouse, Eur. J. Neurosci., 23, 3034–3042, https://doi.org/10.1111/j.1460-9568.2006.04827.x, 2006.
Ni, M. M., Luo, Y., Liu, J., Liao, D. Q., and Tang, Y. D.: FMRFamide modulates outward potassium currents in mouse olfactory sensory neurons, Clin. Exp. Pharmacol. Physiol., 35, 563–567, https://doi.org/10.1111/j.1440-1681.2007.04840.x, 2008.
Nie, W., Fu, B., O'Brien, P., Wang, J., Su, W., Tanomtong, A., Volobouev, V., Ferguson-Smith, M., and Yang, F.: Flying lemurs – The "flying tree shrews"? Molecular cytogenetic evidence for a Scandentia-Dermoptera sister clade, BMC Biol., 6, https://doi.org/10.1186/1741-7007-6-18, 2008.
Obata, S. and Usukura, J.: Morphogenesis of the photoreceptor outer segment during postnatal development in the mouse (BALB/c) retina, Cell Tissue Res., 269, 39–48, https://doi.org/10.1007/BF00384724, 1992.
Obermayer, B.: Muster und Funktionen von Apoptose und Proliferation während der Morphogenese der Trigeminusplakode von Tupaia belangeri (Tupaiidae, Scandentia, Mammalia), Doctoral thesis, Department of Anatomy and Embryology, University of Göttingen, Germany, 2009.
Ochs, M., Mayhew, T. M., and Knabe, W.: To what extent are the retinal capillaries ensheathed by Müller cells? A stereological study in the tree shrew Tupaia belangeri, J. Anat., 196, 453–461, https://doi.org/10.1046/j.1469-7580.2000.19630453.x, 2000.
Otte, V.: Die Ausbreitung des Epikards bei Tupaia belangeri (Tupaiidae, Scandentia, Mammalia), Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1991.
Pakan, J. M., Iwaniuk, A. N., Wylie, D. R., Hawkes, R., and Marzban, H.: Purkinje cell compartmentation as revealed by zebrin II expression in the cerebellar cortex of pigeons (Columba livia), J. Comp. Neurol., 501, 619–630, https://doi.org/10.1002/cne.21266, 2007.
Park, D., Zawacki, S. R., and Eisthen, H. L.: Olfactory signal modulation by molluscan cardioexcitatory tetrapeptide (FMRFamide) in axolotls (Ambystoma mexicanum), Chem. Senses, 28, 339–348, https://doi.org/10.1093/chemse/28.4.339, 2003a.
Park, S. H., Park, J. W., Park, S. J., Kim, K. Y., Chung, J. W., Chun, M. H., and Oh, S. J.: Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina, Diabetologia, 46, 1260–1268, https://doi.org/10.1007/s00125-003-1177-6, 2003b.
Pearring, J. N., Salinas, R. Y., Baker, S. A., and Arshavsky, V. Y.: Protein sorting, targeting and trafficking in photoreceptor cells, Prog. Retin. Eye Res., 36, 24–51, https://doi.org/10.1016/j.preteyeres.2013.03.002, 2013.
Pérez de Sevilla Müller, L., Shelley, J., and Weiler, R.: Displaced amacrine cells of the mouse retina, J. Comp. Neurol., 505, 177–189, https://doi.org/10.1002/cne.21487, 2007.
Petros, T. J., Rebsam, A., and Mason, C. A.: Retinal axon growth at the optic chiasm: to cross or not to cross, Annu. Rev. Neurosci., 31, 295–315, https://doi.org/10.1146/annurev.neuro.31.060407.125609, 2008.
Petry, H. M. and Hárosi, F. I.: Visual pigments of the tree shrew (Tupaia belangeri) and greater galago (Galago crassicaudatus): A microspectrophotometric investigation, Vision Res., 30, 839–851, https://doi.org/10.1016/0042-6989(90)90053-N, 1990.
Phelan, P. E., Mellon, M. T., and Kim, C. H.: Functional characterization of full-length TLR3, IRAK-4, and TRAF6 in zebrafish (Danio rerio), Mol. Immunol., 42, 1057–1071, https://doi.org/10.1016/j.molimm.2004.11.005, 2005.
Pombal, M. A., de Arriba, M. C., Sampedro, C., Alvarez, R., and Megías, M.: Immunocytochemical localization of calretinin in the olfactory system of the adult lamprey, Lampetra fluviatilis, Brain Res. Bull., 57, 281–283, https://doi.org/10.1016/S0361-9230(01)00701-8, 2002.
Pont-Lezica, L., Béchade, C., Belarif-Cantaut, Y., Pascual, O., and Bessis, A.: Physiological roles of microglia during development, J. Neurochem., 119, 901–908, https://doi.org/10.1111/j.1471-4159.2011.07504.x, 2011.
Primmer, S. R.: In search of a model species for aging research: A study of the life span of tree shrews, J. Anti Aging Med., 5, 179–201, https://doi.org/10.1089/10945450260195621, 2002.
Radlanski, R. J. and Renz, H.: An atlas of prenatal development of the human orofacial region, Eur. J. Oral. Sci., 118, 321–324, https://doi.org/10.1111/j.1600-0722.2010.00756.x, 2010.
Ramsey, M. and Perkins, B. D.: Basal bodies exhibit polarized positioning in zebrafish cone photoreceptors, J. Comp. Neurol., 521, 1803–1816, https://doi.org/10.1002/cne.23260, 2013.
Rasmussen, S. L., Holland, L. Z., Schubert, M., Beaster-Jones, L., and Holland, N. D.: Amphioxus AmphiDelta: Evolution of Delta protein structure, segmentation, and neurogenesis, Genesis, 45, 113–122, https://doi.org/10.1002/dvg.20278, 2007.
Rehkämper, G.: Untersuchungen über den Neocortex von Tupaia belangeri unter Berücksichtigung seiner Ontogenese, Wiss. Hausarbeit für die 1. Staatsprüfung für das Lehramt an Gymnasien, Kiel, Germany, 1977.
Röll, B.: Characterization of retinal oil droplets in diurnal geckos (reptilia, gekkonidae), J. Exp. Zool., 287, 467–476, https://doi.org/10.1002/1097-010X(20001201)287:7<467::AID-JEZ2>3.0.CO;2-8, 2000.
Saint-Jeannet, J. P. and Moody, S. A.: Establishing the pre-placodal region and breaking it into placodes with distinct identities, Dev. Biol., 389, 13–27, https://doi.org/10.1016/j.ydbio.2014.02.011, 2014.
Saito, T. H., Nakane, R., Akazome, Y., Abe, H., and Oka, Y.: Electrophysiological analysis of the inhibitory effects of FMRFamide-like peptides on the pacemaker activity of gonadotropin-releasing hormone neurons, J. Neurophysiol., 104, 3518–3529, https://doi.org/10.1152/jn.01027.2009, 2010.
Samorajski, T., Ordy, J. M., and Keefe, J. R.: Structural organization of the retina in the tree shrew (Tupaia glis), J. Cell. Biol., 28, 489–504, https://doi.org/10.1083/jcb.28.3.489, 1966.
Sánchez-Guardado, L., Puelles, L., and Hidalgo-Sánchez, M.: Fate map of the chicken otic placode, Development, 141, 2302–2312, https://doi.org/10.1242/dev.101667, 2014.
Sandmann, D., Engelmann, R., and Peichl, L.: Starburst cholinergic amacrine cells in the tree shrew retina, J. Comp. Neurol., 389, 161–176, https://doi.org/10.1002/(SICI)1096-9861(19971208)389:1<161::AID-CNE12>3.0.CO;2-O, 1997.
Santos, A. M., Calvente, R., Tassi, M., Carrasco, M. C., Martín-Oliva, D., Marín-Teva, J. L., Navascués, J., and Cuadros, M. A.: Embryonic and postnatal development of microglial cells in the mouse retina, J. Comp. Neurol., 506, 224–239, https://doi.org/10.1002/cne.21538, 2008.
Schleicher, A., Morosan, P., Amunts, K., and Zilles, K.: Quantitative architectural analysis: a new approach to cortical mapping, J. Autism Dev. Disord., 39, 1568–1581, https://doi.org/10.1007/s10803-009-0790-8, 2009.
Schlosser, G.: Hypobranchial placodes in Xenopus laevis give rise to hypobranchial ganglia, a novel type of cranial ganglia, Cell Tissue Res., 312, 21–29, https://doi.org/10.1007/s00441-003-0710-8, 2003.
Schlosser, G.: Induction and specification of cranial placodes, Dev. Biol., 294, 303–351, https://doi.org/10.1016/j.ydbio.2006.03.009, 2006.
Schlosser, G.: Making senses: Development of vertebrate cranial placodes, Int. Rev. Cell. Mol. Biol., 283, 129–234, https://doi.org/10.1016/S1937-6448(10)83004-7, 2010.
Schmitz, J., Ohme, M., and Zischler, H.: The complete mitochondrial genome of Tupaia belangeri and the phylogenetic affiliation of Scandentia to other eutherian orders, Mol. Biol. Evol., 17, 1334–1343, 2000.
Schönemann, F. N.: Die Frühentwicklung des Myocards von Tupaia belangeri (Tupaiidae, Scandentia, Mammalia), Diploma thesis, Department of Morphology, University of Göttingen, Germany, 1990.
Schumann, S.: Die pränatale Ossifikation des postkranialen Skeletts von Tupaia belangeri: Ein Beitrag zur Charakterisierung von Ontogeneseabläufen, Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1984.
Schunke, A. C. and Zeller, U.: Chondrocranium and dermal bones of the Lowland Streaked Tenrec Hemicentetes semispinosus (Afrosoricida, Tenrecidae) and their comparison with Potamogale and other insectivoran-grade placental mammals, Vertebr. Zool., 60, 37–72, 2010.
Schwaier, A.: Breeding tupaias (Tupaia belangeri) in captivity, Z. Versuchstierkd., 15, 255–271, 1973.
Schwaier, A.: A cage for the successful maintenance of tree shrews (Tupaia belangeri) in captivity, Z. Versuchstierkd., 16, 337–340, 1974.
Schwaller, B.: Calretinin: From a "simple" Ca2+ buffer to a multifunctional protein implicated in many biological processes, Front. Neuroanat., 8, 3, https://doi.org/10.3389/fnana.2014.00003, 2014.
Sechrist, J., Nieto, M. A., Zamanian, R. T., and Bronner-Fraser, M.: Regulative response of the cranial neural tube after neural fold ablation: Spatiotemporal nature of neural crest regeneration and up-regulation of Slug, Development, 121, 4103–4115, 1995.
Shimp, K. L., Bhatnagar, K. P., Bonar, C. J., and Smith, T. D.: Ontogeny of the nasopalatine duct in primates, Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 274, 862–869, https://doi.org/10.1002/ar.a.10101, 2003.
Sillitoe, R. V., Malz, C. R., Rockland, K., and Hawkes, R.: Antigenic compartmentation of the primate and tree shrew cerebellum: A common topography of zebrin II in Macaca mulatta and Tupaia belangeri, J. Anat., 204, 257–269, https://doi.org/10.1111/j.0021-8782.2004.00282.x, 2004.
Solodkin, A., Peri, E., Chen, E. E., Ben-Jacob, E., and Gomez, C. M.: Loss of intrinsic organization of cerebellar networks in spinocerebellar ataxia type 1: Correlates with disease severity and duration, Cerebellum, 10, 218–232, https://doi.org/10.1007/s12311-010-0214-5, 2011.
Solovei, I., Kreysing, M., Lanctôt, C., Kösem, S., Peichl, L., Cremer, T., Guck, J., and Joffe, B.: Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution, Cell, 137, 356–368, https://doi.org/10.1016/j.cell.2009.01.052, 2009.
Steinberg, R. H., Fisher, S. K., and Anderson, D. H.: Disc morphogenesis in vertebrate photoreceptors, J. Comp. Neurol., 190, 501–508, https://doi.org/10.1002/cne.901900307, 1980.
Steinecker, N.: Die frühe Ontogenese der Vena cardinalis anterior und ihrer Zuflüsse bei Tupaia belangeri (Tupaiidae, Scandentia, Mammalia), Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1989.
Streit, A.: The preplacodal region: An ectodermal domain with multipotential progenitors that contribute to sense organs and cranial sensory ganglia, Int. J. Dev. Biol., 51, 447–461, https://doi.org/10.1387/ijdb.072327as, 2007.
Sugihara, I. and Quy, P. N.: Identification of aldolase C compartments in the mouse cerebellar cortex by olivocerebellar labeling, J. Comp. Neurol., 500, 1076–1092, https://doi.org/10.1002/cne.21219, 2007.
Sun, S. K., Dee, C. T., Tripathi, V. B., Rengifo, A., Hirst, C. S., and Scotting, P. J.: Epibranchial and otic placodes are induced by a common Fgf signal, but their subsequent development is independent, Dev. Biol., 303, 675–686, https://doi.org/10.1016/j.ydbio.2006.12.008, 2007.
Süss, M., Knabe, W., Kuhn, H.-J., Smolej, V., and Venus, B.: Exakte Bilderfassung großer Objekte am Beispiel histologischer Schnitte, GIT Labor-Fachzeitschrift, 8, 948–949, 2000.
Süss, M., Washausen, S., Kuhn, H.-J., and Knabe, W.: High resolution scanning and three-dimensional reconstruction of cellular events in large objects during brain development, J. Neurosci. Methods, 113, 147–158, https://doi.org/10.1016/S0165-0270(01)00486-1, 2002.
Suwanpradid, J., Rojas, M., Behzadian, M. A., Caldwell, R. W., and Caldwell, R. B.: Arginase 2 deficiency prevents oxidative stress and limits hyperoxia-induced retinal vascular degeneration, PLoS One, 9, e110604, https://doi.org/10.1371/journal.pone.0110604, 2014.
Swadzba, M. E., Hauck, S. M., Naim, H. Y., Amann, B., and Deeg, C. A.: Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis, PLoS One, 7, e50929, https://doi.org/10.1371/journal.pone.0050929, 2012.
Tarboush, R., Chapman, G. B., and Connaughton, V. P.: Ultrastructure of the distal retina of the adult zebrafish, Danio rerio, Tissue Cell, 44, 264–279, https://doi.org/10.1016/j.tice.2012.04.004, 2012.
Tarboush, R., Novales Flamarique, I., Chapman, G. B., and Connaughton, V. P.: Variability in mitochondria of zebrafish photoreceptor ellipsoids, Vis. Neurosci., 31, 11–23, https://doi.org/10.1017/S095252381300059X, 2014.
Taylor, J. S. and Guillery, R. W.: Early development of the optic chiasm in the gray short-tailed opossum, Monodelphis domestica, J. Comp. Neurol., 350, 109–121, https://doi.org/10.1002/cne.903500108, 1994.
Teddy, J. M. and Kulesa, P. M.: In vivo evidence for short- and long-range cell communication in cranial neural crest cells, Development, 131, 6141–6151, https://doi.org/10.1242/dev.01534, 2004.
Theveneau, E. and Mayor, R.: Neural crest migration: Interplay between chemorepellents, chemoattractants, contact inhibition, epithelial-mesenchymal transition, and collective cell migration, Wiley Interdiscip. Rev. Dev. Biol., 1, 435–445, https://doi.org/10.1002/wdev.28, 2012.
Trainor, P. A., Sobieszczuk, D., Wilkinson, D., and Krumlauf, R.: Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways, Development, 129, 433–442, 2002.
Traver, D., Herbomel, P., Patton, E. E., Murphey, R. D., Yoder, J. A., Litman, G. W., Catic, A., Amemiya, C. T., Zon, L. I., and Trede, N. S.: The zebrafish as a model organism to study development of the immune system, Adv. Immunol., 81, 253–330, https://doi.org/10.1016/S0065-2776(03)81007-6, 2003.
Usukura, J. and Obata, S.: Morphogenesis of photoreceptor outer segments in retinal development, Prog. Ret. Eye Res., 15, 113–125, https://doi.org/10.1016/1350-9462(95)00006-2, 1995.
Vilensky, J. A.: The neglected cranial nerve: nervus terminalis (cranial nerve N), Clin. Anat., 27, 46–53, https://doi.org/10.1002/ca.22130, 2014.
Wang, X., Kochetkova, I., Haddad, A., Hoyt, T., Hone, D. M., and Pascual, D. W.: Transgene vaccination using Ulex europaeus agglutinin I (UEA-1) for targeted mucosal immunization against HIV-1 envelope, Vaccine, 23, 3836–3842, https://doi.org/10.1016/j.vaccine.2005.02.023, 2005.
Washausen, S. and Knabe, W.: Apoptosis contributes to placode morphogenesis in the posterior placodal area of mice, Brain Struct. Funct., 218, 789–803, https://doi.org/10.1007/s00429-012-0429-y, 2013.
Washausen, S., Obermayer, B., Brunnett, G., Kuhn, H.-J., and Knabe, W.: Apoptosis and proliferation in developing, mature, and regressing epibranchial placodes, Dev. Biol., 278, 86–102, https://doi.org/10.1016/j.ydbio.2004.10.016, 2005.
Wheway, G., Parry, D. A., and Johnson, C. A.: The role of primary cilia in the development and disease of the retina, Organogenesis, 10, 69–85, https://doi.org/10.4161/org.26710, 2014.
Williams, S. E., Mason, C. A., and Herrera, E.: The optic chiasm as a midline choice point, Curr. Opin. Neurobiol., 14, 51–60, https://doi.org/10.1016/j.conb.2004.01.010, 2004.
Wirsig-Wiechmann, C. R., Wiechmann, A. F., and Eisthen, H. L.: What defines the nervus terminalis? Neurochemical, developmental, and anatomical criteria, Prog. Brain Res., 141, 45–58, https://doi.org/10.1016/S0079-6123(02)41083-7, 2002.
Wolbarsht, M. L.: The function of intraocular color filters, Fed. Proc., 35, 44–50, 1976.
Yoshida, K., Watanabe, D., Ishikane, H., Tachibana, M., Pastan, I., and Nakanishi, S.: A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement, Neuron, 30, 771–780, https://doi.org/10.1016/S0896-6273(01)00316-6, 2001.
Young, J. M., Massa, H. F., Hsu, L., and Trask, B. J.: Extreme variability among mammalian V1R gene families, Genome Res., 20, 10–18, https://doi.org/10.1101/gr.098913.109, 2010.
Zeller, U.: Zur Ontogenese und Morphologie des Craniums von Tupaia belangeri (Tupaiidae, Scandentia, Mammalia), Doctoral thesis, Department of Morphology, University of Göttingen, Germany, 1983.
Zeller, U. and Kuhn, H.-J.: Postpartum erythrophagocytosis, iron storage and iron secretion in the endometrium of the tree shrew (Tupaia) during pregnancy, J. Anat., 184, 597–606, 1994.
Zhang, W. and Delay, R. J.: Pulse stimulation with odors or IBMX/forskolin potentiates responses in isolated olfactory neurons, Chem. Senses, 31, 197–206, https://doi.org/10.1093/chemse/bjj017, 2006.
Zhang, P., Yang, C., and Delay, R. J.: Urine stimulation activates BK channels in mouse vomeronasal neurons, J. Neurophysiol., 100, 1824–1834, https://doi.org/10.1152/jn.90555.2008, 2008.
Zhang, J., Li, Y., Shi, G., Chen, X., Wang, J., and Hou, X.: Characterization of α-tubulin gene distinctively presented in a cytoplasmic male sterile and its maintainer line of non-heading Chinese cabbage, J. Sci. Food Agric., 89, 274–280, https://doi.org/10.1002/jsfa.3438, 2009.
Zilles, K. J.: Ontogenesis of the visual system, edited by: Brodal, A., Hild, W., van Limborgh, J., Ortmann, R., Schiebler, T. H., Töndury, G., and Wolff, E., Adv. Anat. Embryol. Cell Biol., 54, Springer, Berlin, Germany, 1978.
Special issue